GIET UNIVERSITY, GUNUPUR - 765022

RD19MSC024
Roll No:

Total Number of Pages : 1
\square
AR-19
M.SC
M.Sc $1^{\text {ST }}$ SEMESTER REGULAR EXAMINATIONS, NOV/DEC 2019-20

PHPC103- Computer Programming and Numerical Analysis
Time: 3 Hours
Max Marks: 80
The figures in the right hand margin indicate marks.
Q. 1 Answer any four of the following:
[$4 \times 4=16$]
a What is the Basic Data types and Description Briefly in C.
b Write a C program to find SUM and AVERAGE of two integer Numbers using User Defined Functions?
c Write a program for Trapizodial Method?
d What are the Necessary steps for forming and solving simultaneous linear equations?
e Describe Finite Difference in Briefly.
f What is meant by Extrapolation and Interpolation?
OR
2. Answer all questions from the following [2 $\times 8=16$]
a Write a short notes of Integer Data Type
b Write a short notes on Array Manipulation in C
c Write a C Program to Check the Prime Number.
d Deliberate the C program for Simpson $1 / 3$ rule for easy and accurate calculation of numerical integration of any function
e Write a Short note on Gaussian elimination
f Explain about the Matrix Inversion.
g Write a short notes on eigen values and eigen vectors
h Difference between Forward Differences and Backward Differences Interpolation.

SECTION-B

3. Answer all Questions:
$[16 \times 4=64]$
a What is the difference between a statement and an expression? Write a C program for Statement and Expression with suitable examples.

OR
b Explain about Conditional and Interactive Constructs. Write a C Programs of Conditional and Interactive Constructs with suitable examples.
4.
a Write a C program for Ranga - Kutta Method.
OR
b Write a C program of finding the Root of an Equation by Newton - Raphson Method 5.
a Use Gauss - Jordan method to solve the system of equations: $x+y+z=1,4 x+3 y-z=6$, $3 x+5 y+3 z=4$.

OR
b How can I solve a transcendental equation by using the Newton-Raphson method?
6.
a Write a numerical integration by trapezoidal and Simpson's rules
OR
b What is the Runge-Kutta second order method? How does one write a first order differential equation in the above form?

