Roll No: \square
AR-19
M.SC

Total Number of Pages : 2

M.Sc $1^{\text {ST }}$ SEMESTER REGULAR EXAMINATIONS, NOV/DEC 2019-20 MTPC105
 NUMERICAL ANALYSIS AND ITS APPLICATIONS

Time: 3 Hours
Max Marks: 80
The figures in the right hand margin indicate marks.

SECTION A

Q. 1 Answer any four of the following:
[$4 \mathrm{X} 4=16$]
a Determine the step size h that can be used in the tabulation of $f(x)=\sin x$ in that interval $[1,3]$ so that linear interpolation will be correct to four decimal places after rounding off.
b Explain briefly about quadratic interpolation
c Explain briefly about iterated interpolation
d Explain briefly about Lagrange bivariate interpolating polynomial.
e The following data for a function $f(x, y)$ is given: Find $f(0.25,0.75)$ using linear interpolation.

y x	0	1
0	1	1.414214
1	1.732051	2

f What is the use of Trapezoidal method and explain its formula
OR
2. Answer all questions from the following
[2 x $8=16]$
a Explain about interpolating polynomial
b Write about Newton divided difference interpolation
c State Weierstrass approximation and coordinate function
d Obtain the rational approximation of the form $\frac{a_{0}+a_{1} x}{b_{0}+b_{1} x+b_{2} x^{2}}$ to e^{x}.
e Explain about linear and quadratic interpolation
f Find the approximation value to
$\int_{0}^{1} \frac{\sin x}{x} d x \quad$ using mid point rule and two point open type rule
g Evaluate the integral $\int_{y=1}^{1.5} \int_{x=1}^{2} \frac{d x d y}{x+y}$ using the Simpsons rule with $\mathrm{h}=0.5$ and $\mathrm{y}=0.5$ compare with exact solution
h Define difference equation and give an example.
SECTION-B
3. Answer all Questions:

$$
[16 \times 4=64]
$$

a Calculate the nth divided difference of $1 / \mathrm{x}$, based on the points $\mathrm{xo}, \mathrm{x} 1, \mathrm{x} 2, \ldots \mathrm{xn}$.
OR
b Obtain the least squares polynomial approximation of degree one and two for $\mathrm{f}(\mathrm{x})=x^{\frac{1}{2}}$ on $[0,1]$
a Find the quadrature formula $\int_{0}^{1} \frac{d x}{\sqrt{x(1-x)}}=\propto_{1} f(0)+\propto_{2} f\left(\frac{1}{2}\right)+\propto_{3} f(1)$ which is exact for polynomials of highest possible degree. Then use the formula on $\int_{0}^{1} \frac{d x}{\sqrt{x-x^{3}}}$ and compare with the exact value.

OR
b Evaluate the integral
$\int_{0}^{1} \frac{d x}{1+x}$ using composite trapezoidal rule, composite Simpsons rule with 2,4 and 8 equal subintervals
5.
a Evaluate the integral $\int_{1}^{2} \int_{1}^{2} \frac{d x d y}{x+y}$ using the trapezoidal rule with $h=k=0.5$ and $h=k=$ 0.25 . Improve the estimate using Romberg integration

OR
b Find the solution of the initial value problem $\frac{d u}{d t}=-2 \mathrm{t} u^{2}, \mathrm{u}(0)=1$
Using $4^{\text {th }}$ order R-K method.
6.
a Solve the initial value problem $u^{1}=-2 \mathrm{t} u^{2}, \mathrm{u}(0)=1$ with $\mathrm{h}=0.2$ on the interval $[0,0.4]$ using the backward Euler method.

OR
b Given the initial value problem $u^{1}=t^{2}+u^{2}, u(0)=0$ determine the first three non zero Terms in the Taylors series for $u(t)$ and hence obtain the value for $u(1)$. Also determine t when the error in $\mathrm{u}(\mathrm{t})$ obtained from the first two non zero terms is to be less than 10^{-6} after rounding off.

