Roll No:

M.SC

Total Number of Pages : 2

M.Sc $1^{\text {ST }}$ SEMESTER REGULAR EXAMINATIONS, NOV/DEC 2019-20
 MTPC104
 ELEMENTARY COMPLEX ANALYSIS

Time: 3 Hours
Max Marks: 80
The figures in the right hand margin indicate marks.

SECTION A

Q. 1 Answer any four of the following:

$$
[4 \mathrm{X} 4=16]
$$

a Find all the values of $\left(\frac{1}{2}+\frac{\sqrt{3}}{3} i\right)^{\frac{3}{4}}$.
b Find the general value of $\log (-i)$.
4 Marks

4 Marks
c Show that the function $f(z)=\sqrt{|x y|}$ is not analytic at the origin even though C- 4 Marks R equations are satisfied thereof.
d Show that $w=\frac{i-z}{i+z}$ maps the real axis of z-plane into the circle $|\mathrm{w}|=1$ and the half 4 Marks plane $y>0$ into the interior of the unit circle $|\mathrm{w}|=1$ in the w-plane.
e State and prove Morera's theorem (or) Converse of Cauchy's theorem. 4 Marks
f Show that the series $z(1-z)+z^{2}(1-z)+z^{3}(1-z)+\cdots \infty$ converges for $|z| \quad 4$ Marks <1. Determine whether it converges absolutely or not.

OR

2. Answer all questions from the following

$$
[2 \times 8=16]
$$

a Find the value of $(1+2 i)^{3}$
b Find the fourth roots of unity. 2 Marks
c Separate the real and imaginary parts of $\cosh (x+i y)$.
2 Marks
d State Cauchy - Riemann equations in polar form. 2 Marks
e Find the critical points of the transformation $w=z+\frac{1}{z}$.
$\mathrm{f} \quad$ Find the fixed points of the transformation $w=\frac{z}{2 z-1}$.
g State Cauchy's fundamental theorem.
2 Marks
h Find the nature and location of the singularities of the function $f(z)=\frac{e^{2 z}}{(z-1)^{4}} \quad 2$ Marks

SECTION-B

Answer all the following questions :-
3.
a i)Find the cube roots of unity and show that they form an equilateral triangle in 16 Marks the Argand diagram.
ii) Use Demoivre's theorem to solve the equation $x^{4}-x^{3}+x^{2}-x+1=0$

OR
b i)Expand $\cos ^{8} \theta$ in a series of cosines of multiples of θ.
ii) Expand $\sin ^{7} \theta \cos ^{3} \theta$ in a series of sines of multiples of θ.
4.
a Prove that the necessary and sufficient conditions for the derivative of the 16 Marks function $w=f(z)=u(x, y)+i v(x, y)$ to exist for all values of z in a region R , are i) $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ are continuous functions of x and y in R
ii) $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$.

OR
b Determine the analytic function $f(z)=u+i v$, if $u-v=\frac{\cos x+\sin x-e^{-y}}{2(\cos x-\cosh y)}$ and 16 Marks $f\left(\frac{\pi}{2}\right)=0$.
5.
a Find the bilinear transformation which maps the points $z=1, i,-1$ onto the 16 Marks points $w=2, i,-2$. Hence find the fixed and critical points of this transformation.

OR
b
6.
a State and prove Cauchy's integral formula and hence evaluate 16 Marks $\oint_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z$ where C is the circle $|z|=3$.

OR
b
(i) State and prove Liouville's theorem. 16 Marks
(ii) Evaluate $\int_{c} \frac{d z}{(z+4)(z+1)^{3}}$, where $C:|z|=3$.

