Roll No: \square
AR-19
M.SC

Total Number of Pages : 2

M.Sc $1^{\text {ST }}$ SEMESTER REGULAR EXAMINATIONS, NOV/DEC 2019-20
 MTPC101
 PARTIAL DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS

Time: 3 Hours
The figures in the right hand margin indicate marks.

SECTION A

Q. 1 Answer any four of the following:[$4 \times 4=16$]
a Find the Fourier transform of $\frac{1}{|x|}$
b Convert the equation into canonical form $y^{2} u_{x x}-x^{2} u_{y y}=0$
c Transform the equation in canonical form $u_{x x}-4 u_{x y}+4 u_{y y}=e^{y}$
d Determine the general solution of $4 u_{x x}+5 u_{x y}+u_{y y}+u_{x}+u_{y}=2$
e For any y, z belongs to $D(L)$ we have the Lagrange identity y $L[z]-z$ $\mathrm{L}[\mathrm{y}]=\frac{d}{d x}\left[p\left(y z^{1}-z y^{1}\right)\right]$
f If the Laplace transform of $f(t)$ is $F(s)$ then the Laplace transform of $f(c t)$ with $\mathrm{c}>0$ is $(1 / \mathrm{c}) \mathrm{F}(\mathrm{s} / \mathrm{c})$

OR

2. Answer all questions from the following

a Define order, homogeneous and non homogeneous partial differential equation
b Define linear and quasi linear PDE
c Define Jacobian and Canonical forms
d State Cauchy- Kowalewskaya theorem
e Explain about Wave equation
f Define Fourier transforms in PDE and give one use
g Explain about Convolution theorem in PDE
h Define Laplace Transform and conditions of Laplace transforms

Max Marks: 80

4 marks

4 marks
4 marks
4 marks

4 marks

4 marks
$[2 \times 8=16]$

2 marks

2 marks
2 marks
2 marks
2 marks
2 marks
2 marks
2 marks

SECTION-B

3. Answer all Questions:

a Convert the PDF to canonical form: $x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=0$
16 marks
Find the characteristics equation and reduce it into canonical form

$$
\begin{gathered}
u_{x x} \mp \operatorname{sech} x^{4} u_{y y}=0 \\
\text { Or }
\end{gathered}
$$

b Construct the Green's function for two point BVP
16 marks

$$
y^{\prime \prime}+\omega^{2} y=f(x), \quad y(a)=y(b)=0 .
$$

4.

a Determine the solution of the following problem

$$
\begin{aligned}
& u_{t t}=c^{2} u_{x x} \quad 0<\mathrm{x}<1, \mathrm{t}>0 \quad u(x, 0)=\sin \frac{\pi x}{l} 0<o r= \\
& x<\text { or }=l \\
& \mathrm{U}(\mathrm{x}, 0)=0, \mathrm{u}(0, \mathrm{t})=0 \mathrm{u}(1, \mathrm{t})=0 \\
& \quad \text { Or }
\end{aligned}
$$

b State and prove Uniqueness theorem.
5.
a Determine the solution of the initial and boundary value problem
$u_{t t}=9 u_{x x}, 0<x<\infty, t>0$
$u(x, 0)=0,0 \leq x<\infty$,
$u_{t}(x, 0)=x^{3}, \quad 0 \leq x<\infty$,
$u_{x}(0, t)=0, \quad t \geq 0$
b Show that i) $F_{C}\left\{e^{-a x}\right\}=\sqrt{\frac{2}{\pi}} \frac{a}{a^{2}+k^{2}}, \mathrm{a}>0$

$$
\text { ii) } F_{s}\left\{e^{-a x}\right\}=\sqrt{\frac{2}{\pi}} \quad \frac{k}{a^{2}+k^{2}}, a>0
$$

$$
\text { iii) } F_{s}-1\left\{\frac{1}{k} e^{-s k}\right\}=\sqrt{\frac{2}{\pi}} \tan -1\left(\frac{x}{s}\right), \mathrm{a}>0
$$

6.

a i) Prove that the Fourier transform F is linear
ii) Let $\mathrm{F}[\mathrm{f}(\mathrm{x})]$ be a Fourier transform of $\mathrm{f}(\mathrm{x})$ then prove that $\mathrm{F}[\mathrm{f}(\mathrm{x}-\mathrm{c})]=e^{-i k c} F(f(x))$

Or
b Show that the solution of the Dirichlet's problem, if it exists is unique.

