

## **GIET UNIVERSITY, GUNUPUR – 765022**

| 2016            | RD19MTECH0 |  |  |  |  |  |  |  |  | 19MTECH044 |  |
|-----------------|------------|--|--|--|--|--|--|--|--|------------|--|
| Registration No |            |  |  |  |  |  |  |  |  |            |  |

Total Number of Pages: 01

M.TECH

### AR-19

# M.TECH 1<sup>ST</sup> SEMESTER EXAMINATIONS NOV/DEC 2019 CHEMICAL, MPCCH1030 ADVANCED HEAT TRANSFER

Time: 3 Hours Max Marks: 70

The figures in the right hand margin indicate marks.

## PART-A

(10 X 2=20 MARKS)

- 1. Answer the following questions.
  - a. Define Thermal Conductivity.
  - b. Define Biot number and Fourier number
  - c. What do you understand by stability criterion for the solution of transient problems?
  - d. State Newtons law of cooling.
  - e. Write the formula for volume expansion coefficient.
  - f. Define Nusselt no. and its physical significance
  - g. Which boundary layer thickness is greater and why for fluid having Prandtl number greater than 1?
  - h. What is meant by reflectivity?
  - i. What is meant by transmitivity?
  - j. What is the range of values for the emissivity of a surface?

### PART-B

(5 X 10=50 MARKS)

Answer any five questions from the following.

- 2. Derive the energy equation for conduction in sphere for radial direction heat flow with internal heat generation.
- 3. Derive the energy equation for conduction in three dimensions for plane wall.
- 4. Explain the significance of forward, backward and central difference methods
- 5. Explain the importance of heat transfer coefficient over thermal conductivity in convection heat transfer.
- 6. Explain the Colburn analogy.
- 7. Derive the general expression of forced convection heat transfer co-efficient by dimensional analysis method.
- 8. Derive the expression for the rate of heat transfer by radiation within infinite long concentric cylinder.