REGULATION 2018

COURSE STRUCTURE

SYLLABUS

DEPARTMENT OF CHEMICAL ENGINEERING

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR 765022

(Affiliated to Biju Patnaik University of Technology, Rourkela)
Accredited by NAAC with 'A' Grade with a CGPA of 3.28/4.00
Accredited by NBA

4 Year B.Tech Degree Programme
Regulation 2018
Choice Based Credit System
Outcome Based Assessment

Chemical Engineering

Programme Educational Objectives

Programme educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve. Programme educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The Chemical Engineering UG Programme at GIET, Gunupur is framed and designed such that within first few years after graduation, the graduates will be able to:

- **PEO 1:** Acquire the fundamental principles of science and chemical engineering with modern experimental and computational skills.
- **PEO 2:** Face current technical challenges in the society by maintaining a professional and ethical attitude towards the society and also considering impacts on safety, health and environment.
- **PEO 3:** Excel their career as Chemical Engineers or researchers in both traditional and emerging fields of Chemical Engineering such as environmental, material, food, pharmaceutical and energy applications.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: To correlate theoretical concepts with real time experimental and field data through application of process simulation and analytical techniques.

PSO2: To develop cutting edge chemical processes, equipment and products for the benefit of the human kind using innovative research and development skills and continuous learning efforts.

PROGRAMME OUTCOMES (POs)

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **6. The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

SEMESTER WISE COURSE STRUCTURE

I SEMESTER [FIRST YEAR]

SI. No.	Course Category	Course Code	Course Title	L	Т	P	Credits					
			THEORY									
1	BS	BBSBS1010	Engineering Mathematics-I	3	1	0	4					
2	BS	BBSBS1021	Engineering Physics	3	0	0	3					
	Ďδ	BBSBS1022	Engineering Chemistry	3	U	U	3					
2	Γ¢	BBSES1031	Basics of Mechanics	3		0	3					
3	ES	Basics of Thermodynamics	3	0	0	3						
		Basics of Electronics										
4	ES	BBSES1042	Basics of Electrical Engineering Programming for Problem	3	0	0	3					
5	ES	3	0	0	3							
6	HS	Communicative English-I	2	0	0	2						
		PRA	ACTICAL / SESSIONAL									
7	BS	BBSBS1121	Engineering Physics Laboratory	0	0	2	1					
/	DS	BBSBS1122	Engineering Chemistry Laboratory			2	1					
8	ES	BBSES1141	Basics of Electronics Laboratory	0	0	2	1					
0	[2	BBSES1142	Basics of Electrical Engineering Laboratory		U	2	1					
9	ES	BBSES1150	Programming for Problem Solving Laboratory	0	0	2	1					
10	HS	BBSHS1160	Communicative English-I Laboratory	0	0	2	1					
11	BBSES1171 Eng		Engineering Drawing	0	0	2	1					
		BBSES1172	Engineering Workshop		U							
12	МС	BBSHS1180	NSS	_	_	-	0					
	TOTAL 17 1 10 23											

II SEMESTER [FIRST YEAR]

SI. No.	Course Category	Course Code	Course Title	L	T	Р	Credits				
			THEORY	•	,						
1	BS	BBSBS2010	Engineering Mathematics-II	3	1	0	4				
0	DC	BBSBS1021	Engineering Physics	3	0	0	0				
2	BS	BBSBS1022	Engineering Chemistry	3	0	0	3				
2	FC	BBSES1031	Basics of Mechanics	2	_	0	2				
3	ES	BBSES1032	Basics of Thermodynamics	3	0	0	3				
		BBSES1041	Basics of Electronics								
4	ES	BBSES1042	Basics of Electrical Engineering	3	0	0	3				
5	ES	BBSES2050	Data Structure using 'C++'	3	0	0	3				
6	HS	2	0	0	2						
		PRA	ACTICAL / SESSIONAL								
7	BS	BBSBS1121	Engineering Physics Laboratory	0	0	2	1				
/	DS	BBSBS1122	Engineering Chemistry Laboratory		U	2	_				
8	ES	BBSES1141	Basics of Electronics Laboratory	0	0	2	1				
0	ES	BBSES1142	Basics of Electrical Engineering Laboratory		U	Ζ	l				
9	ES	BBSES2150	Data Structures using 'C++' Laboratory	0	0	2	1				
10	HS	BBSHS2160	Communicative English-II Laboratory	0	0	2	1				
11	11 ES BBSES1171		Engineering Drawing	0	0	2	1				
11		BBSES1172	Engineering Workshop		U						
12	МС	BBSHS2180	YOGA	_	-	ı	0				
TOTAL 17 1 10 23											

III SEMESTER [SECOND YEAR]

Sl. No.	Course Category	Course Code	Course Title	L	Т	P	Credits
			THEORY				
1	PC	BCHPC3010	Fluid Mechanics	3	0	0	3
2	PC	BCHPC3020	3	0	0	3	
3	PC	3	0	0	3		
4	BS	BBSBS3040	Engineering Mathematics-III	3	1	0	4
5	ES	BCSES3050	Object Oriented Programming through JAVA	3	0	0	3
6	BS / HS	BBSBS3061	Environmental Engineering and Safety	3	0	0	3
0	вз/пз	BMSHS3062	Engineering Economics and Costing	3		U	3
		PR	ACTICAL / SESSIONAL				
7	PC	BCHPC3110	Fluid Dynamics LAB	0	0	2	1
8	PC	BCHPC3120	Mechanical Operations Lab	0	0	2	1
9	PC	BCHPC3130	Thermo physical Lab	0	0	2	1
10	ES	BCSES3151	JAVA Programming Laboratory	0	0	2	1
		18	1	8	23		

IV SEMESTER [SECOND YEAR]

Sl. No.	Course Category	Course Code	Course Title	L	Т	P	Credits
		THEORY					
1	PC	BCHPC4010	Chemical Process Calculation	3	1	0	4
2	PC	Mass Transfer-I	3	0	0	3	
3	PC	3	0	0	3		
4	PC	3	0	0	3		
5	ES	BMEES4050	Material Science	3	0	0	3
6	BS / HS	BBSBS3061	Environmental Engineering and Safety	3	0	0	3
O	DS / HS	BMSHS3062	Engineering Economics and Costing	3	U	U	3
		PRAC	TICAL / SESSIONAL				
7	PC	BCHPC4120	Mass Transfer-I Lab	0	0	2	1
8	PC	BCHPC4130	Heat Transfer Lab	0	0	2	1
9	PC	BCHPC4140	Chemical Technology Lab	0	0	2	1
10	ES	BMEES4150	Material Testing Lab	0	0	2	1
		18	1	8	23		

V SEMESTER [THIRD YEAR]

Sl. No.	Course Category	Course Code	Course Title	L	Т	P	Credits					
			THEORY			•						
1	PC	BCHPC5010	Process control and Instrumentation	3	1	0	4					
2	PC	BCHPC5020	Mass Transfer-II	3	0	0	3					
3	PC	BCHPC5030	3	0	0	3						
4	PE	3	0	0	3							
4	PE	3	0	U	3							
		BCHPE5044	Corrosion Engineering									
5	OE	B**OE505*	Open Elective - 1	3	0	0	3					
		PRA	ACTICAL / SESSIONAL			•						
6	PC	BCHPC5110	Process control Lab	0	0	2	1					
7	PC	BCHPC5120	Mass Transfer-II Lab	0	0	2	1					
8	PC	BCHPC5130	Chemical Reaction Engineering-I Lab	0	0	2	1					
9	EC	0	0	2	1							
10	EC	BTPEC5170	^Summer Internship-I	0	0	2	1					
	TOTAL 15 1 10 21											

^{*}College should conduct at least one NSDC program under this category.

[^] Four (4) weeks duration summer internship either in industry or in an R&D organization, including educational institutes with excellent research culture. The student is expected to submit a formal report at the end of the programme. On-line MOOC courses may contribute up to 20% of the credits, with in-house examination being conducted.

VI SEMESTER [THIRD YEAR]

Sl. No.	Course Category	Course Code	Course Title	L	Т	P	Credits
		THEORY		•	•		
1	PC	BCHPC6010	Process Equipment and Design	3	1	0	4
2	PC	BCHPC6020	Chemical Reaction Engineering- II	3	0	0	3
3	PC	BCHPC6030	Fuel &Energy Technology	3	0	0	3
		Battery Technology				_	
4	PE	Fertilizer Technology	3	0	0	3	
		BCHPE6044	Pinch Technology	=			
5	OE	B**OE605*	Open Elective-II	3	0	0	3
		PRAC	CTICAL / SESSIONAL	ı	ı	I	I
6	PC	BCHPC6110	Process Equipment and Design Lab	0	0	2	1
7	PC	BCHPC6120	Chemical Reaction Engineering- II Lab	0	0	2	1
8	PC	BCHPC6130	BCHPC6130 Fuel &Energy Technology Lab			2	1
9	PC	BCHPC6140	Advanced Laboratory-I	0	0	2	1
10	EC	BTPEC6160	#Soft Skill and Employability Skill	0	0	2	1
	15	1	10	21			

[#]To be conducted by the Training & Placement Department of the College.

VII SEMESTER [FOURTH YEAR]

Sl. No.	Course Category	Course Code	Course Title	L	Т	P	Credits				
			THEORY	•							
1	PC	BCHPC7010	Transport Phenomenon	3	0	0	3				
		BCHPE7021	Fluidization Engineering								
2	DE	BCHPE7022	Petroleum Refinery Engineering]	0	0	2				
2	PE	BCHPE7023	Mineral Process Engineering	3	0	U	3				
	DE				2						
3	PE	3	0	0	3						
		BCHPE7044	Polymer Technology								
		BCHPE7041	Treatment of Industrial effluent								
		BCHPE7042	Pollution and its control								
4	PE	BCHPE7043	Modern Separation Technique	3	0	0	3				
		BCHPE7044	Integrated Solid Waste Management								
5	OE	B**OE705*	Open Elective-III (Any One)	3	0	0	3				
		PI	RACTICAL / SESSIONAL								
6	PC	BCHPC7140	Advanced Laboratory-II	0	0	4	2				
7	EC	BCHPC7150	Mini Project / Projects on Internet of Things	0	0	4	2				
8	EC	BCHPC7170	^Summer Internship-II	0	0	2	1				
TOTAL 15 0 10											

VIII SEMESTER [FOURTH YEAR]

Sl. No.	Course Category	Course Code	Course Title	L	Т	P	Credits				
				•							
		BCHPE8011									
1	PE	BCHPE8012	Optimization Methods	3	0	0	3				
1	PE	BCHPE8013	Physical and Analytical Chemistry	3	U	U	3				
		BCHPE8014	Water Conservation and Management								
	BCHPE8021 Nanotechnology										
2	PE	BCHPE8022 Fermentation Technology		3	0	0	3				
2	PE	BCHPE8023	Biotechnology	3	U	U	3				
		BCHPE8024	Biochemical Engineering								
3	OE	B**OE803*	Open Elective-IV (Any One)	3	0	0	3				
		PF	RACTICAL / SESSIONAL								
4	EC	BCHEC8150	Major Project / Industrial Project / Startup Training cum Project	0	0	10	5				
5	5 EC BCHEC8180 Seminar and Technical Writing			0	0	2	1				
6	EC	BCHEC8190	Comprehensive Viva-Voce	0	0	2	1				
	TOTAL 9 0 14 16										

UG IN CHEMICAL ENGINEERING

SCHEME OF INSTRUCTION SUMMARY

SL.	COURSE WORK -		(CREI	DITS	/ SE	MES	ΓER		TOTAL	0/
NO.	SUBJECTS AREA	I	II	III	IV	V	VI	VII	VIII	CREDITS	%
1	Humanities, Social & Management Study (HS)	3	3	-	3	-	-	1	1	9	5
2	Basic Sciences (BS)	8	8	7	-	-	-	-	-	23	14
3	Engineering Sciences (ES) / Basic Engineering (BE)	12	12	4	4	-	-	1	-	32	19
4	Professional Core (PC)	-	-	12	16	13	14	5	-	60	35
5	Professional Electives (PE)	-	-	-	-	3	3	9	6	21	12
6	Open Electives (OE)	-	-	-	-	3	3	3	3	12	7
7	Project Work, Seminar and/or Internship in Industry or elsewhere (EC)	-	-	-	-	2	1	3	7	13	8
8	Mandatory Courses (MC)	-	-	-	-	_	-	-	-	0	0
	TOTAL	23	23	23	23	21	21	20	16	170	100

UG IN CHEMICAL ENGINEERING

I SEMESTER [FIRST YEAR]

Sl. No.	Course Category	Course Code	Course Title	L	Т	P	Credits	QP
			THEORY					
1	BS	BBSBS1010	Engineering Mathematics-I	3	1	0	4	A
2	BS	BBSBS1021	Engineering Physics	3	0	0	3	A
2	ВЗ	BBSBS1022	Engineering Chemistry		U	O	J	A
3	ES	BBSES1031	Basics of Mechanics	3	0	0	3	A
3	ES	BBSES1032	Basics of Thermodynamics		U	U	3	Α
4	ES	BBSES1041	Basics of Electronics	3	0	0	3	Α
4	ES	BBSES1042	Basics of Electrical Engineering	7 3	U	U	3	A
5	ES	BBSES1050	Programming for Problem Solving	3	0	0	3	A
6	HS	BBSHS1060	Communicative English and Soft skills	2	0	0	2	A
		PR	ACTICAL / SESSIONAL					
7	BS	BBSBS1121	Engineering Physics Laboratory	0	0	2	1	
,	ВЗ	BBSBS1122	Engineering Chemistry Laboratory	U	U	2	1	
		BBSES1141	Basics of Electronics Laboratory					
8	ES	BBSES1142	Basics of Electrical Engineering Laboratory	0	0	2	1	
9	ES	BBSES1150	Programming for Problem Solving Laboratory	0	0	2	1	
10	HS	BBSHS1160	Communicative English and Soft skills Laboratory	0	0	2	1	
11	ES	BBSES1171	Engineering Drawing	0	0	2	1	
11	Eo	BBSES1172	Engineering Workshop				1	
12	MC	BBSHS1180	NSS	-	-	ı	0	
		TOT	AL	17	1	10	23	

I SEMESTER

SUBJ	IECT	CODE			TITI	LE O	F TH	IE SU	JBJE	CT	L	T	P	C	QP
BE	BSBS	1010		ENG	SINE	ERIN	IG M	ATH	EMA	ATICS-I	3	1	0	4	A
					Pre -	-Requi	site: Fu	ındame	ental of	calculus	1			ı	
						Course	Educa	ational	Objec	tives					
CEO1	To fi	nd critical po	ints,	and us	se them	to loca	ate max	ima an	d minii	ma.					
CEO2	To provide the standard methods for solving differential equations.														
CEO3	To study Fourier series and to express a function in Fourier series.														
CEO4	To us	To use matrices, determinants and techniques for solving systems of linear equations in the different areas of													
	Linear Algebra.														
Course	Outcomes: Upon successful completion of this course, students should be able to:														
CO1										l differentiation		ries an	d to un	derstan	d its
	_	cation.		0.1		Ū		1							
CO2	Solve	the initial v	alue	and bo	oundary	value	proble	m of O	DE rela	ated to Electrical	circu	it.			
CO3	Exect	ute the techni	ique	of Fou	ırier ser	ies for	applyii	ng in E	ngineeı	ring applications	•				
CO4	Find	the Eigen va	lue a	and vec	ctor of	a matri	x by us	ing pro	perties	of linear algebra	ì				
						CO	PO &	PSO N	Aappin	ıg					
Cos					PROC	GRAM	ME O	UTCO	MES					PSOs	,
COS	1 2 3 4 5 6 7 8 9 10 11 12											1		2	
CO1	1	2													
CO2	2	3													
CO3	1	3													
CO4	2	3													
Avg.	1.5	2.75													

UNIT-I MULTI-VARIABLE CALCULUS

(13 Hours)

Partial differentiation, Euler's theorem, Total derivative, Taylor's theorem for function of two variable (without proof), Maxima and Minima for function of two variables, Differentiation under integral sign (Leibnitz rule).

SYLLABUS

UNIT- II (12 Hours)

DIFFERENTIAL EQUATIONS-I

Ordinary differential Equations: First order and first degree differential equations and their method of solving, Application to Electrical circuits and heat conduction.

DIFFERENTIAL EQUATIONS-II

Linear differential equations of higher order and their different methods of solutions (operator methods). Second order linear differential equations and their solutions: Euler Cauchy equation, solution by undermined coefficient method and variation of parameters. Simple application to electrical circuits.

UNIT -III (10 Hours)

Fourier series, Fourier expansion of functions of arbitrary period, Even and odd functions, Half Range Expansion.

UNIT -IV LINEAR ALGEBRA:

(15 Hours)

Matrices, Types of matrices, Rank of matrix, Eigen values and Eigen vectors, Clayey – Hamilton theorem (without proof), system of linear equations, Orthogonal matrices, Complex matrices, Hermitical and skew-Hermitical matrices, Unitary matrices, similarity of matrices. Quadratic forms and Canonical forms.

Teaching Methods: Chalk& Board/ PPT/Video Lectures

Text Books

- 1. Advanced Engineering Mathematics by E. Kreyszig, Tenth Edition, Willey
- 2. Differential Calculus by Santi Narayan and Mittal, S.Chand Publications

Reference Books:

- 1. Higher Engineering Mathematics by BS Grewal: Khanna Publishers, New Delhi.
- 2. Higher Engineering Mathematics by B.V.Ramana, McGraw Hills Education
- 3. Advanced Engineer methods by N. P. Bali & Manish Goyal.

SUBJ	ECT	CODE		T	ITLE	OF	THE	SUB	JECT		L	T	P	C	QP					
BI	SBS1	021		E	NGI	NEEI	RING	PHY	SICS	2	3	0	0	3	A					
			Pr	e –Rec	quisite	: Kno	wledge i	in +2 F	Physics	and Ma	thema	tics								
	Course Educational Objectives O1 Providing fundamental knowledge about the oscillations and waves																			
CEO1																				
CEO2	To familiar with structure and properties of materials.																			
CEO3	Providing knowledge of mathematical concepts to solve electromagnetic problems and fundamental informa														information					
	about Quantum mechanics with applications.																			
Course	Outcom	es: Upon si	иссе	ssful c	omplei	tion of	this cou	rse, sti	udents	should b	e able	to:								
CO1		rstand and a																		
CO2	Descri	be the princ	iple	of lasi	ng and	optoel	lectronic	s devic	ces in c	ommunic	cation s	ystem.								
CO3		n the ideas		-																
CO4		ret the funda											_	ns.						
CO5	Expres	ss the basics	of o	quantui	m mecl	hanics	and illus	strate tl	ne quan	tum mec	hanica	l proble	ems.							
							-PO & I		`	3										
COs		T		PI	ROGR	AMM	E OUT	COME	ES					PSC	Эs					
	1	2	3	4	5	6	7	8	9	10	11	12	1		2					
CO1		3	2																	
CO2					3		1													
CO3		3			1															
CO4	3		2																	
Avg.	0.75	1.5	1		1		0.25													

UNIT:01 (12 Hours)

Interaction of Wave and Matter

Simple Harmonic Oscillator, Damped harmonic oscillator and Forced harmonic oscillator, and coupled oscillator, Waves and its Characteristics, Superposition of Waves, Interference by division of wave front (Bi-prism experiment) and division of amplitude (Newton's Ring experiment). Introduction to Diffraction, types of diffraction.

SYLLABUS

LASER, spontaneous & stimulated emission, Einstein's relation, Ruby Laser and He-Ne Laser, Semiconductor laser, application of Laser. Optical fiber, Acceptance angle, Numerical aperture, Skip distance, Step index and Graded index fibers, Attenuations in optical fibers, applications of optical fiber in communication systems.

UNIT:02 (12 Hours)

Physics of Materials

Introductions to materials, Crystallography, Crystal structure, crystal direction and plane, Miller indices, Inter planar spacings, Reciprocal Lattice and its characteristics, Reciprocal Lattice of SC, FCC and BCC, Brillouin Zone, Bragg's law. Energy bands in solids (conduction band, valence band and Fermi level), Classification of materials on the basis of band theory. Magnetic properties of Materials & their applications. Nano materials and applications (particulates, thin films, nano structures, etc.)

UNIT:03 (10 Hour)

Electromagnetic theory and wave

Review of grad, divergence and curl, Gauss divergence theorem and Stoke's theorem (no derivations), fundamental laws of electrostatics, magneto-statics and electromagnetism, displacement current and conduction current, Maxwell's equations. Electromagnetic wave and its characteristics, electromagnetic wave equation for free space and in charge free conducting medium, electromagnetic energy, Poynting vector and Poynting theorem.

UNIT:04 (12 Hours)

Quantum Mechanics

Introduction to dual nature: Black body radiation, photoelectric effect, Compton effect (qualitative idea only), de-Broglie's hypothesis, Heisenberg's uncertainty principle and its application to non-existence of electron inside the nucleus and ground state energy of one dimensional harmonic oscillator, Basic postulates of Quantum Mechanics, Wave function and its characteristics, probability density, normalization, eigen values, eigen functions and expectation values, Schrödinger's equation (time dependent and time independent). Application of Schrödinger equation to one dimensional potential well, potential step and potential barrier (qualitative ideas).

Teaching Methods: Chalk& Board/ PPT/Video Lectures

Text Books:

- 1. Engineering Physics by D. K. Bhattacharya and Poonam Tanden, Oxford University Press.
- 2. Engineering Physics, H K Malik and A K Singh, Tata McGraw Hill, MGH.

Reference Books:

- 1. Materials Science & Engg., V. Raghvan, Prentice Hall of India.
- 2. Concepts of Modern Physics, A. Beiser, S. Mahajan, S.R. Choudhary, Tata McGraw Hill.
- 3. Lasers & Optical engineering, P Dass, Narosa Publishers, Springer Publisher.
- 4. Engineering Physics by B. B. Swain and P. K. Jena, Kitab Mahal, Cuttack
- 5. Quantum Mechanics by SatyaPrakash, Kitab Mohal, etc. Kedar Nath Ram Nath Publisher

SUBJ	ECT C	CODE		TIT	TLE (OF T	HE S	UBJ	ECT		L	T	P	C	QP	
BB	SBS10	22]	ENG	INEE	RIN	G CE	IEMI	STR	Y	3	0	0	3	A	
						Pre –I	Requisi	te: Ch	emistry	7						
)bjectiv							
CEO1	To imp	oart the kn	owledge	of app	lication	of che	emical s	science	s in the	field of e	ngineer	ing				
CEO2	To foc	us on mic	roscopic	chemis	try in t	erms o	f atomi	c and n	nolecula	ar levels.						
CEO3	The co	urse aims	at elucid	lating p	rinciple	es of ap	plied c	hemist	ry in wa	ater treatr	nent.					
CEO4	To giv	e detailed	account	about t	he reac	tivity o	of metal	ls w.r.t	prevent	ion of co	rrosion.					
CEO5	To enl	ighten the	students	with th	ne appli	cations	s of pol	ymers.								
Course C	Outcome	tcomes: Upon successful completion of this course, students should be able to:														
CO1	Analyz	Analyze microscopic chemistry in terms of atomic and molecular orbital and Explain the ranges of the														
	electro	Analyze microscopic chemistry in terms of atomic and molecular orbital and Explain the ranges of the electromagnetic spectrum by electronic transition														
CO2	Identif	y water tr	eatment 1	techniq	ues for	domes	tic and	industr	ial pur	oses						
CO3	Compa	are types o	of corrosi	on, and	l it's co	ntrol n	neasure	S.								
CO4	Unders	stand vario	ous types	of pol	ymers,	their pi	reparati	ion aloi	ng with	application	ons					
			• • • • • • • • • • • • • • • • • • • •		<u> </u>	CO-P	O & P	SO Ma	apping							
Car				PR	OGRA		OUT							PSC)s	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1		2	
CO1	3	2	2	2		2	3									
CO2	3	3	1	2		2	3									
CO3	3	3	2	1		2	3									
CO4	3	3	2	1		2	3									
Avg.	3	2.75	1.75	1.5		2	3									

UNIT-1ATOMICANDMOLECULARSTRUCTURE

(13 Hours)

Schrodinger's wave equation(no derivation), Significance of wave functions, Particle in a box, Application for conjugated molecule, Molecular Orbital theory and Energy level diagram for Diatomic molecules, Spectroscopic techniques and applications: Electronics spectroscopy, Vibrational and rotational spectroscopy of diatomic molecules.

UNIT-2 WATER CHEMISTRY

(13 Hours)

Types of Hardness, Determination of Hardness by EDTA method, Treatment of water for Domestic use, Water softening processes Lime-soda process, Ion Exchange method, Boiler feed water, Scale and Sludge, Caustic embrittlement, Carbonate and phosphate conditioning, Colloidal conditioning, Calgon conditioning.

UNIT-3 CORROSION (10Hours)

Thermodynamic functions: Entropy, Free energy, Relation between E.M.F and free energy, The Nernst's equation and application, Definition of corrosion, Types of corrosion: Dry corrosion and wet corrosion, Galvanic corrosion, Concentration cell corrosion, Factors influencing corrosion, Corrosion control: Cathodic protection (Sacrificial anodic protection and Impressed current cathodic protection), Inhibitors, Protective coatings: Galvanization and Tinning.

UNIT -4 POLYMER CHEMISTRY

(12 Hours)

Introduction, polymer, Classification of polymers, Plastics: Thermosetting and thermo plastic, PVC, PE, PS, PMMA, PTFE, Bakelite, Nylon-6, 6, Nylon-6, Fiber reinforced plastic.

*ADD-ON COURSES: Conducting Polymer (Polyaniline, Polyacetylene), Bio-Degradable and Non-Bio Degradable polymer, Nano composite.

Teaching Methods: Chalk& Board/ PPT/Video Lectures

Text Books: 1. Engineering chemistry by Jain & Jain, Dhanpat Rai publishing company (p) Ltd

Reference Books:

- 1. A Text Book of Engineering Chemistry by S.S.Dara, S Chand Publishers.
- 2. A Text Book of Engineering Chemistry by SashiChawla, Dhanpat Rai Publishing house.
- 3. Text Book of Engineering Chemistry, 2nd edition, by R.Gopalan, D.Venkapaya & Sulochana Nagarajan, Vikas Publishing House Pvt. Ltd.
- 4. B. Tech Chemistry- I and II by P. K. Kar, S. Dash, B. Mishra kalyani publishers.
- 5. Physical Chemistry By P.W Atkins
- 6. Engineering Chemistry(NPTEL Web Book) by B . L Tembe, Kamaluddin and M.S. Krishna
- 7. Fundamentals of Molecular spectroscopy By C. N Banwell
- 8. University chemistry by B.H. Mahan

SUB.	JECT	CODE		TI	TLE	OF T	HE S	SUBJ	ECT		L	T	P	C	QP	
B	BSES	1031		BA	SICS	S OF	MEC	CHAN	IICS		3	0	0	3	A	
					Pre –I	Requisi	te: Phy	sics, N	Iathem	atics						
					Co	urse E	ducatio	onal Ol	ojective	es						
CEO1	To ap	ply the establi	shed	engine	ering n	nethod	to com	plex en	gineeri	ng proble	m.					
CEO2	To un	derstand the v	ecto	rial and	scalar	represe	entation	of for	ces and	moments						
CEO3	To ev	aluate the diff	erent	forces	exhibi	t in trus	ss mem	ber.								
CEO4	To ob	tain the know	ledge	on ki	nematio	es and l	kinetics	of part	icle to	analyze si	mple	and pi	ractical	problei	ns	
Course (Outcom	utcomes: Upon successful completion of this course, students should be able to: Determine the resultant force and moment for given force system.														
CO1	Deter	Determine the resultant force and moment for given force system.														
CO2	Evalu	Determine the resultant force and moment for given force system. Evaluate the forces in members of trusses, frames and problems related to friction.														
CO3	Analy	ze the propert	ies o	f surfac	e in re	lation t	o centro	oid and	momen	nt of inert	ia					
CO4	Adapt	the laws of m	otio	n, kinei	natics (of moti	on and	their in	terrelat	ionship						
						CO-P	O & PS	O Map	ping							
Cos				PR()GRA	MME (OUTC	OMES						PSC	Os	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	2 1		2	
CO1	3	2														
CO2	2	3														
CO3	3	3														
CO4	2	3														
Avg.	2.5	2.75														

UNIT:1 [16 Hours]

STATICS OF PARTICLES

Fundamental concepts and principles of engineering mechanics. Resolution of forces Resultant of several concurrent forces Free body diagram. Principles of transmissibility. Moment of a force Varignon's theorem Equivalent system of forces Types of supports and corresponding reactions.

UNIT:2 [12 Hours]

ANALYSIS OF TRUSSES AND FRICTION

Introduction to Truss Analysis of Trusses Method of joints, Method of sections.

Laws of Friction Angle of Friction Angle of Repose Ladder and Wedge Friction

UNIT:3 [12 Hours]

PROPERTIES OF SURFACES

Determination of first moment area of plane figures by integration – Determination of centroid of composite figures by using standard formula.

Determination of second moment area of plane figures by integration Parallel and perpendicular axis theorems

Determination of area moment of inertia of composite figures by using standard formula Polar moment of inertia Radius of gyration.

UNIT:4 [10 Hours]

DYNAMICS OF PARTICLES

Rectilinear motion: uniform velocity and uniformly accelerated motion Newton second law D'Alembert's principle and its applications work and energy equation Impulse and Momentum Impact of elastic bodies.

Teaching Methods: Chalk& Board/ PPT/ Guest Lecture

Text Books:

- 1. Timoshenko, and Young, "Engineering Mechanics", Tata Mc Graw Hill Book
- 2. S. S. Bhavikatti, "Engineering Mechanics", New Age International

Ref. Books:

- 1. Dr. Bansal.R.K, & Sanjay Bansal, "A Text book of Engineering Mechanics", Lakshmi publications.
- 2. A.K.Tayal, "Engineering Mechanics Statics And Dynamics", Umesh Publications
- 3. Rajasekaran.S, & Sankarasubramanian.G, "Engineering Mechanics", Vikas Publishing House Pvt Ltd, 2011
- 4. Engineering Mechanics, (3ed edition) by Statics and Dynamics K.Vijaya Kumar Reddy and J Suresh Kumar, BS Publications.

SUB	JEC ⁷	CODE		ı	TITL	E OF	THE	SUB	JECT		L	T	P	C	QP
В	BSES	S1032		BAS	ICS (OF TH	IERN	1ODY	NAN	1ICS	3	0	0	3	A
				Pre –R	Requisi	te: Phy	sics, C	hemist	try and	Mathem	atics			•	
						ourse I									
CEO1		n to classify the					•				ature et	c.			
CEO2		principle and													
CEO3		me aware of re											-		
CEO4		nderstand the					pure	substar	ice like	e steam	and its	cond	itions ar	nd Applic	cation of
	Therr	nodynamics in	engii	neering	practi	ces									
	Course Outcomes: <i>Upon successful completion of this course, students should be able to:</i> Explain the basic concepts of system, control volume, thermodynamic properties, thermodynamic equilibrium.														
CO1	Explain the basic concepts of system, control volume, thermodynamic properties, thermodynamic equilibrium, temperature, work and heat energy.														
CO2	Apply	the laws of th	ermo	odynan	nics to	refriger	ators, l	neat en	gines, h	eat pump	s comp	ressor	s and noz	zles etc.	
CO3		ret and apply t													
CO4	Evalu	ate properties of	of pu	re subs	tances,	gases a	and the	ir mixt	ures an	d to deriv	e and a	oply to	thermoo	lynamic p	roblems.
						CO-P	O & P	SO Ma	apping						
Cos				PRO	OGRA	MME	OUTC	OMES	5					PSOs	
C03	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1	3	2													
CO2	2	3													
CO3	2	3													
CO4	3	3													
Avg.	2.5	2.75													

UNIT 1 (15ours)

Basic concepts & definition, scope of thermodynamics. Macroscopic & microscopic approach. Definition of fixed mass (closed) system & control volume (open) system, isolated system. Thermodynamic properties (extensive & intensive), state & its representation on a property diagram, process and its representation, cyclic process Characteristics of properties (point & path function), reversible & irreversible process, Quasistatic Process. Thermodynamic equilibrium. Pressure, Types of pressure, Zeroth law of thermodynamics & temperature scales, calibration of thermometers. Ideal gasses & their P V T relation. Energy transfer; Work transfer(definition & calculation), different modes of work Displacement work for various process, Free expansion work, Heat transfer; modes of heat transfer, basic laws in conduction, convection & radiation.

UNIT 2 (13 Hours)

First law of thermodynamics, formal statement (using cyclic process) first law for processes of fixed masses (closed system) Introduction of internal energy, enthalpy as thermodynamic properties Definition of sp.heats (C_p & C_v) and their use in calculation of internal energy & enthalpy with emphasis on ideal gas. Application of first law to control volume (Steady Flow); nozzle, diffuser, compressor, turbine, throttling device.

UNIT 3 (12 Hours)

Second law of thermodynamics, Kelvin Planck & Clausius statements, Carnot cycle. Reversible & irreversible engines and their efficiency (Thermal and maximum Efficiency)

Entropy concepts, Clausius inequality, Entropy Principle.

UNIT 4 (10 Hours)

Properties of pure substance, P v, T s, h s diagram for steam, Steam properties, Introduction to steam table with respect to specific volume, pressure, temperature, enthalpy & entropy, Mollier Diagram. Application of thermodynamics: Steam power plant, Refrigerators and Heat Pump, I C Engines (working principle with schematic diagrams only)

Teaching Methods: Chalk& Board/PPT

Text Books:

- 1 Engineering Thermodynamics by P.K.Nag, Publisher: TMH
- 2 Basic Engineering Thermodynamics by D S Kumar, Publisher: S K Kataria & Sons New Delhi.

Ref. Books:

- 1. Fundamental of Engineering Thermodynamics by E. Rathakrishnan, publisher. PHI
- 2. Thermodynamics: An Engineering Approach by Yunus A. Cengel, Michael A. Boles Publisher: Mcgraw Hill Education
- 3. Thermal engineering by R.K.Rajput, Laxmi Publications Pvt. Ltd.
- 4. Steam Tables in SI Units by K. Ramalingam, Scitech Publications (P) Ltd.

SUE	BJECT	CODE		TI	TLE	OF '	THE	SUB	JEC	T.	L	T	P	C	QP
E	BBSES	1041		BAS	SICS	OF	ELE	CTR	ONI	CS	3	0	0	3	A
							luisite s		•						
							ıcatior								
CEO1		y the basic too	ols and	d test	equipn	nent u	sed to	const	ruct, t	roubleshoot,	and n	naintai	in stand	dard e	electronic
		s and systems.													
CEO2	Explai	n the constructi	on and	l appli	cation	of star	ndard (circuit	config	gurations and	l identi	fy the	compo	nent t	ypes and
	connec	ctions used to bu	ıild fuı	nctioni	ng elec	etronic	circui	ts.							
CEO3	Design	simple combin	ationa	l and s	equent	tial log	ic circ	uits							
CEO4	Identif	y functions of o	ligital	multin	neter, o	cathod	e ray o	scillos	cope a	and transduc	ers in t	he me	asurem	ent of	physical
	variables Course Outcomes: Unon successful completion of this course students should be able to:														
	Course Outcomes: Upon successful completion of this course, students should be able to: Recognize different components such as transistors, resistors, capacitors and diodes which fit on a small chip with														
CO1	Recogn	nize different co	ompon	ents su	ich as	transis	tors, re	esistors	, capa	citors and di	odes w	hich fi	it on a s	small	chip with
	each le	eg of the chip co	nnecti	ng to a	point	within	the ci	rcuit.							
CO2	Apply	modern modell	ing sof	tware	for dra	ofting c	lifferer	nt elect	ronic c	circuits.					
CO3	Analyz	ze modern elect	ronic c	ircuits	and sy	stems									
CO4	Formu	late mathematic	al des	cription	ns and	proced	dures i	n desig	ning n	ew electron	ic syste	ms an	d techn	ically	present
					CO	O-PO	& PSC) Map	ping						
COs			1	PRO	GRAN	ME (OUTC	OMES	8					PSC)s
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1														
CO2			2												
CO3			2										1	1	
CO4	2		2											-	
Avg.	0.75		1.5												

UNIT-1 (12Hours)

Semiconductor Devices:- Classification of material, Energy band diagram, properties of semiconductors, Types of semiconductors, Semiconductor diode (no bias, forward, reverse), temperature effects, diode equivalent circuit, zener diode, LED, Half wave rectifier, full wave rectifier, clippers, clampers.

UNIT-2 (10Hours)

Bipolar Junction Transistors (BJTs):- Introduction, transistor operation, Simplified structure and physical operation of n-p-n and p-n-p transistors in the active region, Common–Base configuration, Common–emitter configuration, Common-collector configuration Current-voltage characteristics of BJT, BJT as an amplifier and as a switch.

Field Effect Transistors (FETs):- Introduction, construction and characteristics of JFETs, transfer characteristics, D-MOSFET, E-MOSFET.

UNIT-3 (9Hours)

Communication Systems: -Analog and digital signals, block diagram of basic communication system, need for modulation, methods of modulation, AM/FM transmitters & receivers (Block diagram description only)

Electronic Instruments:- Basic principle of Oscilloscope, Function of the sweep generator, Block diagrams of oscilloscope, Measurement of frequency and phase by Lissajous method, Application of oscilloscope for measurement of voltage, period and frequency, Block diagram of standard signal generator, AF sine and square wave generator, and Function generator.

UNIT-4 (11Hours)

Digital Systems and Binary Numbers:-Digital systems, Binary numbers, number system conversion, octal &hexa decimal number, 1's& 2's compliments, signed binary numbers, binary codes, binary logic.

Logic Gates and Boolean Algebra:- The inverter, The AND, OR, NAND NOR, Exclusive-OR and Exclusive-NOR gate, Boolean operations and expressions, Laws and Rules of Boolean algebra, DeMorgan's theorem, Boolean analysis of logic circuits, Standard forms of Boolean expressions, Boolean expression and truth table Combinational Logic and Their

Functions: Basic combinational logic circuits, Implementation of combinational logic, The universal properties of NAND and NOR gates, Basic adders

Teaching Methods: Chalk& Board/ PPT/Video Lectures

Text Books:

- 1. Electronic Devices (Seventh Edition), Thomas L. Floyd, Pearson Education, 482 FIE, Patparganj, Delhi 110 092 (Selected Portions).
- 2. Digital Fundamentals (Eighth Edition), Thomas L. Floyd and R.P. Jain, Pearson Education, 482 FIE, Patparganj, Delhi 110 092.
- 3. Electronic Instrumentation, H.S. Kalsi, Tata McGraw-Hill Publishing Company Limited, New Delhi.

Reference Books:

- 1. Microelectronic Circuits (Fifth Edition), Adel S. Sedra and Kenneth C. Smith, Oxford University Press, YMCA Library Building Jai Singh Road, New Delhi 110 001.
- 2. Electronic Devices and Circuit Theory (Ninth Edition), Robert L. Boylestad and Louis Nashelsky, Pearson Education, 482 FIE, Patparganj, Delhi 110 092.
- 3. Electronics Principles (7th Edition), Albert Malvono and David J. Bates, Tata McGraw-Hill Publishing Company Limited, New Delhi.

SUB.	JECT	CODE		T	TTLE	E OF	THE	SUB	JECT	Γ	L	T	P	C	QP	
B	BSES	1042		В	ASIC E	S OF		_	_	L	3	0	0	3	A	
]	Pre -R	equisit	e: Phys	sics and	d Math	ematics						
)bjecti							
CEO1	under	rt a basic know stand the imp	act of	f techn	ology i	n a glo	bal and	societa	al conte	ext.				_		
CEO2		course providence of machine								analysis,	magne	tic cii	cuit ar	alysis.	working	
CEO3		nasize the effe y to function o						ionary	measur	es. Impro	ve the					
Course (Outcon	utcomes: Upon successful completion of this course, students should be able to: Understand the basic concepts of magnetic, AC & DC circuits.														
CO1	Unde	Understand the basic concepts of magnetic, AC & DC circuits. Explain the working principle, construction, applications of DC machines, AC machines & measuring instruments.														
CO2	Expla	in the workin	g prii	nciple,	constr	uction,	applica	tions o	f DC m	achines,	AC ma	chine	s & m	easurir	g instruments.	
CO3		knowledge ab		he fun	dament	als con	cepts o	f powe	r genera	ation, don	nestic	wiring	g, elect	ric sho	ck and	
CO4	Under	rstand Electri	cal po	wer g	eneratio	on and	transir	nission	proces	s in India	and fu	inctio	n on m	ulti-di	sciplinary	
	•					CO-P	O & P	SO Ma	apping							
COs				PR	OGRA	MME	OUTC	COMES	5					F	PSOs	
205	1	2	3	4	5	6	7	8	9	10	1	1 1	2 1	2		
CO1	2	2														
CO2	1	2						_								
CO3	2	2														
CO4	1	1														
Avg.	1.5	1.75														

UNIT-1 (15 Hours)

DC Circuits:

Introduction to electrical terminology, Ohm's Law, Equivalent Resistance, series-parallel circuits, star-delta transformation, types of elements, ideal and practical voltage & current sources; Kirchhoff's Law, Mesh and Nodal Analysis.

Network theorems:

Superposition Theorem, Thevenin theorem, Maximum power transfer theorem excited by independent sources, Transients in RL & RC series circuits.

UNIT-2 (13 Hours)

Single phase & Three phase Ac circuits:

AC Fundamentals: RMS & Average value, form and peak factors, Complex algebra, concepts of reactance, impedance and their representation, AC through pure R, L, C, series RL, series RC, series RLC circuit, Concept of power & power factor; expression of power in complex notation.

Three-phase AC circuits:

Comparison between 1-ph & 3-ph AC circuit, Star & Delta connection, relation between line and phase quantities, Measurement of 3-phase power using 2-wattmeter method.

Magnetic circuits:

Magnetic flux, Magnetic flux density, Magnetic fields intensity, Relation between B & H, B-H curve, Analogy between Electric and Magnetic circuit, Leakage flux.

UNIT-3 (12 Hours)

DC Machines:

Introduction, working principle of DC Generator, Construction, Types, EMF equation, working principle of DC Motor Back e.m.f, Application of DC machines.

AC Machines:

Introduction, Principle of operation of AC machines, Transformers, Construction, EMF equation, Turn ratio, Ideal transformer on no load with phasor diagram, 3-phase Induction motor principle of operation, Rotating magnetic field, Types of rotors, Synchronous speed and slip, Introduction to 1-phase Induction motor, 1-phase motors types, applications of 3-phase and 1-phase motors, AC generator and motors, Principle of operation, types of rotors, Synchronous motor operating principle.

UNIT-4 (10 Hours)

Measuring Instruments:

Introduction, Classification of instruments, construction and working principles of PMMC and moving iron type Instruments. Introduction to Power System &Domestic Wiring:

General layout of electrical power system and functions of its elements, Generation of electricity (Hydro, Thermal and Nuclear power plant), standard transmission and distribution voltages, Service main, Meter board, Fuse, MCB, Earthing (pipe & plate earthing), House wiring, Electric shock & precautions.

Teaching Methods: Chalk& Board/ PPT

Text Books:

- 1. V. Del Toro, "Principles of Electrical Engineering" Prentice Hall International.
- 2. P.V. Prasad, S.Sivanagaraju, R.PrasadBasic Electrical and Electronics Engineering; CENGAGE Learning.
- 3. I.J. Nagarath, "Basic Electrical Engineering" Tata McGraw Hill
- 4. D.E. Fitzgerald & A. Grabel Higginbotham, "Basic Electrical Engineering Mc-Graw Hill.

Reference Books:

- 1. Edward Hughes, "Electrical Technology" Longman
- 2. T.K. Nagsarkar & M.S. Sukhija, "Basic Electrical Engineering" Oxford University Press.
- 3. H. Cotton, "Advanced Electrical Technology" Wheeler Publishing
- 4. W.H. Hayt & J.E. Kennely, "Engineering Circuit Analysis" Mc Graw Hill.
- 5. Theory and Problems of Basic Electrical Engineering by D.P.Kothari & I.J. Nagrath PHI.
- 6. Fundamentals of Electrical Engineering and Electronics by B. L. Theraja, S. Chand & Company Ltd, Reprint Edition 2013.

SUBJE	CT C	CODE		T	ITLE	OF	THE S	SUBJ	quisite: onal Objectives en execute the programs for verifying its correctness. decompose it into functions using divide and conquer approach. tudents should be able to: ical problems and translate into programs. plexity.							
BBS	SES10	050	P	ROG	GRAN		G FO		ROBI	EM	3	0	0	3	A	
							Pre –Re	equisite	:			•			•	
					C	Course 1	Educat	ional C	bjectiv	es						
CEO1	To fo	rmulate a	lgorithm,	transla	ite into	progran	n and th	nen exe	cute the	programs	for verify	ing its co	orrectne	ss.		
CEO2	To an	alyze a pi	roblem fo	r know	ing its	efficien	cy and	decomp	ose it i	nto functio	ons using o	livide an	ıd conqu	er appro	oach.	
Course O	utcome	mes: Upon successful completion of this course, students should be able to: formulate simple algorithms for arithmetic and logical problems and translate into programs.														
CO1	To fo															
CO2	To de	velop pro														
CO3	To un	derstand	and deve	lop pro	grams ı	ısing fu	nctions	and re	cursions	8						
CO4	To de	velop pro	grams us	ing poi	nters a	nd struc	tures aı	nd unde	rstand t	heir functi	onality.					
						CO-F	O & P	SO Ma	pping							
COs					PROG	RAMN	IE OU	TCOM	IES					PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	3	2	1													
CO2	3	3	2													
CO3	3	3	2													
CO4	3	3	2													
Avg.	3	2.75	1.75													
						5	SYLL	ABU	$\mathbf{S}^{}$							

UNIT- I (11 Hours)

Introduction to Programming: Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.)Idea of Algorithm: Steps to solve logical and numerical problems. Representation of Algorithm: Flowchart/Pseudo-code with examples. From algorithms to programs; source code, variables (with data types) variables and memory locations, Syntax and Logical Errors in compilation, object and executable code Arithmetic expressions and precedence. Conditional Branching. Writing and evaluation of conditionals and consequent branching.

UNIT- II (11 Hours)

Loops: writing programs and evaluation of loops

while, do-while and for loop, break, continue, nested loop

Arrays: Arrays (1-D, 2-D)

Basic Algorithms: Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of equations, notion of order of complexity through example programs (no formal definition required)

UNIT- III (11 Hours)

Character arrays and Strings: String handling operations, programs on strings, string handling functions.

Functions: Functions (including using built in libraries), Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference.

Recursion: Recursion, as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci series

UNIT- IV (11 Hours)

Pointers: Idea of pointers, Defining pointers, dynamic memory allocation, Use of Pointers in self-referential structures, notion of linked list (no implementation)

Structure: Structures, Defining structures and Array of Structures.

Teaching Methods: Chalk& Board/ PPT

Text Books:

- 1. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill
- 2. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill

References:

1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India

	JBJE CODI				7	ΓΙΤΙ	LE C)F TH	E SUI	ВЈЕСТ	L	Т	P	C	QP							
BBS	SHS 1	1060		C	OMI	MUI			E ENC KILLS	GLISH AND	2	0	0	PSOs								
]	Pre	-Req	uisite	: fun				ar, vocabulary, usage	of inte	rnet										
										l Objectives												
CEO1	To p	romote co	mm	unica	tion s	kills a	and so	ft skills.	•													
CEO2	To e	nhance the	en	nploy	abilit	y and	entre	preneuri	al skills													
CEO3	Ton	otivate the	e stu	ident	s to pa	articip	ate in	group o	discussio	ns without stage fear												
Course	Outcor	nes: <i>Upon</i>	suc	students to participate in group discussions without stage fear successful completion of this course, students should be able to: mportance of effective communication for professional development																		
CO1																						
CO2	Appl	ication of	voc	abula	ry an	d grai	nmar	for effec	ctive con	nmunication.	•											
CO3	Appl	ication of	Info	ormat	ion ar	nd Co	mmuı	nication	Technol	ogy(ICT) for career de	velopm	ent										
CO4	Nurt	ure and mo	otiva	ate po	ositive	attitu	ıde to	wards p	lacement	ts.												
							(CO-PO	& PSO I	Mapping												
COs						PR	OGR	AMME	OUTC	OMES				PSOs								
COS	1	2	3	4	5	6	7	8	9	10	11	12	1		2							
CO1								1		3												
CO2										1		2										
CO3								2			3											
CO4									3			1										
Avg.								0.75	0.75	1	0.75	0.75										
								CIT 7	TTAD	TIC												

UNIT -1 Importance of English for Communication in the 21st Century

(9 Hours)

- 1.1 Role of English in enhancing employability and entrepreneurial skills
- 1.2 The Nature and Scope of Communication
- 1. 3 Objectives of Communication: Information, advice, suggestion, order, motivation, persuasion, warning, negotiation, decision-making, etc. through English Language skills, i.e., LSRW skills
- 1.4 The process of communication and factors that influence communication: Sender, receiver, channel, code, topic, message, context, feedback, noise, filters and barriers (steps such as Ideation, Encoding, Transmission, Decoding, etc. need to be dealt with); Audience and purpose
- 1.5 Types of Communication: General and Professional Communication; Formal and Informal Communication; Verbal and Non-verbal communication; Intrapersonal and Interpersonal communication; Written communication and Spoken communication.

UNIT -2. English Vocabulary, Grammar & Usage

(8 Hours)

- 2.1 Synonyms and Antonyms
- 2.2 Words often confused
- 2.3 Technical terms and one word substitutes
- 2.4 Idioms and Phrasal Verbs
- 2.5 Identify common errors in English.
- 2.6 Communicative use of the Passive Voice
- 2.7 Difference between American, British and Indian English (Vocabulary based) 1

UNIT- 3. Introduction to Corporate Communication

(10 Hours)

- 3.1 Seven C's communication
- 3.2. Ten C's of Non-communication.
- 3.3 Corporate Communication Direction of Communication: Downward Communication, Upward Communication, Horizontal/Lateral Communication, Diagonal Communication
- 3.4 Communication challenges in today's work place: Advances in technology; culturally diverse workforce; Team-based organizational Settings; how to overcome these challenges
- 3.5 Information and Communication Technology (ICT) and the corporate world, Power point presentation using multimedia; Internet and Intranet; Fax; Teleconferencing; Videoconferencing;
- 3.6 Corporate/Business etiquette: Good listening skills, proper dressing and grooming; proper handshake, mobile etiquette, table manners

UNIT- 4 Soft skills Development.

(9 Hours)

- 4. 1 Importance of soft skills in personal and professional life
- 4.2 Are we hardwired for success?
- 4.3 Importance of developing a positive attitude
- 4.4 Leadership skills.
- 4.5 Teamsmanship.
- 4.6. Lateral thinking
- 4.7 Emotional Intelligence.

Teaching Methods: Chalk& Board/ PPT/Video Lectures

Text Books:

- 1. An Introduction to Professional English and Soft Skills by B. K. Das et al., Cambridge University Press.
- 2. Communicative English for Engineers and Professionals by Nitin Bhatnagar and Mamta Bhatnagar. Published by DK/Pearson.
- 3. Practical English Usage. Michael Swan, OUP,1995.

Reference Books:

- 1. Technical Communication, Principle and Practice by Meenakshi Raman & Sangeeta Sharma, Oxford University Press
- 2. Business Communication Today by Bovee, Courtland L., Thill, John V. Prentice Hall.
- 3. The Ace of Soft Skills: Attitude, Communication and Etiquette for Success by Gopalaswamy Ramesh and Mahadevan Ramesh. Pearson.
- 4. Oxford Guide to English Grammar by John Easthood. Oxford University Press.
- 5. 365 Ways to Change Your World by Norman Vincent Peale by Orient Paperbacks.

LA	B COD	E			NA	ME	OF TH	IE LA	В		L	T	P	С	QP
DD	SBS112	1		I	ENG	INEE	RING	PHYS	SICS		0	0	2	1	
DD	SDS112	1				LAB	ORAT	ORY			U	U	4	1	
							Pre –Re	quisite:							
							Education								
CEO1										hematical	descript	ion.			
CEO2										problems					
CEO3			e able	to wo	rk toge	ether in	n collabo	rative gi	coups to	perform	experin	nents, g	ather d	ata and	reach
	conclusi														
										be able to					
CO1		and the uses of various Basic Instruments for different Physical measurements. ne Physical Laws and verify those using standard Experiments.													
CO2															
CO3				to det	ermine	differ	ent Phys	sical qua	intities	and anlyz	e those	for di	fferent	applicat	ion to
	Physical	•													
CO4			_		•	al quan	tities sys	tematica	lly thro	ugh exper	iments	and des	ign nev	v exper	iments
	with the	theoreti	cal kno	wledge	9										
	T						PO & PS						T		
COs					PRO	<u>GRAM</u>	ME OU				T			PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	Ź	2
CO1		3	2												
CO2					3		1								
CO3		3			1										
CO4	3		2												
Avg.	0.75	1.5	1		1		0.25								

List of Experiments:

- 1. Study of frequency of an electric tuning fork by meld's experiment.
- 2. Study of the acceleration due to gravity by using Bar/Kater's pendulum.
- 3. Study of the law of transverse vibration by using sonometer.
- 4. Study of wavelength of light by Newton's Rings apparatus.
- 5. Study of wavelength of light by Fresenel's bi-prism/Michelson inter ferometer.
- 6. Study of grating element of a plane diffraction grating.
- 7. Study of double slit interface due to He-Ne laser.
- 8. Study of monochromaticity and divergence of the given laser beam
- 9. Study of reflection and total internal reflection by optical fibers
- 10. Study of Hall-coefficient of a semiconductor
- 11. Study of dielectric constant of given solid by Leacher wire method.
- 12. Study of the resistivity of a semiconductor with temperature by four- probe method.
- 13. Study of band gap energy of PN junction (Ge/Si) diode.
- 14. Study of plank's constant using photo-voltaic cell.
- 15. Study of B-H curve of ferromagnetic substance.
- 16. Study of magnetic susceptibility of solods.

LAB	COD	E				NAM	IE OF	THE	LAB		L	T	P	C	QP	
BBS	BS112	22]	ENG		ERING ABOR		MISTI Y	RY	0	0	2	1		
							Pre –	Requisit	te:							
						Cou	rse Educ	ational (Objective	es						
CEO1	To tra	in the s	tudents	about	the app	licatio	ns of che	mical sci	iences in	the field of engir	neering	and te	chnolo	gy		
Course O	utcome	es: <i>Upoi</i>	n succe	essful c	omplet	ion of	this cour	se, stude	ents shou	ld be able to:						
CO1	Under	stand the basic methods of chemical analysis and instrumentations involved														
CO2	Standa	ardize o	e of Chemicals													
CO3	Estima	dardize of Chemicals nate the hardness, ions in salts and compositions in ores.														
CO4	Synthe	esizes tl	he drug	gs and k	now al	out th	eir applic	cations								
						C	O-PO &	PSO M	apping							
COs					PF	ROGR	AMME	OUTCO	MES					PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1		2	
CO1		2		2			2		2		3					
CO2							3		3		2					
CO3		2		2			2		2		2					
CO4		2		2			2		2		2					
Avg.		1.5		1.5			2.25		2.25		2.25					

List of Experiments:

- 1. Determination of total hardness of water by using EDTA.
- 2. Determination of amount of NaOH and Na₂CO₃ present in mixture of two.
- 3. Standardization of KMnO₄ using sodium oxalate.
- 4. Determination of ferrous ion in Mohr's salt by standardized KMnO₄.
- 5. Determination of % of dissolved oxygen in given water sample.
- 6. Estimation of available chlorine in bleaching powder solution.
- 7. Determination of rate constant of acid catalyst Hydrolysis reaction.
- 8. Preparation of aspirin
- 9. Estimation of calcium in limestone.
- 10. Estimation of Zinc in brass.
- 11. To determine the strength of HCl and acetic acid from the mixture of acid by strong alkali (NaOH) by Conductrometry
- 12. Preparation of nanoparticle.
- 13. Determination of partition coefficient of iodine in benzene and water.
- 14. Preparation and determination of pH of buffer solution.
- 15. To determine the molecular weight of polymer by viscosity measurement.

LAI	3 COI	DE			NA	ME	OF 7	гне і	AB		L	T	P	С	QP	
RRG	SES11	<u>/1</u>		B	ASIC	S OI	EL	ECTR	ONI	CS	0	0	2	1		
DD)12011	.71]	LAB	ORA	TOR	Y		U	U		_		
								e –Requ								
	_							lucation								
CEO1	То ј	provide	studer	nts eng	gineeri	ng ski	lls by	way o	f bread	dboard circui	t desigr	n with	electro	nic dev	ices and	
	comp	onents.														
CEO2	To de	esign ar	nd anal	yze va	rious I	Electro	nic cir	cuits su	ch as n	nultivibrators,	applica	tions o	f operat	ional ar	nplifiers,	
	RC c	oupled a	amplifi	ers, os	cillato	s, digi	tal circ	cuits etc.	so tha	t students are	able to	underst	and the	practica	l aspects	
	of ba	sic elect	tronics	theory												
CEO3	To er	enable the students to simulate and test the Analog, Digital and mixed Electronics circuits .														
Course	Outcon	comes: Upon successful completion of this course, students should be able to:														
CO1										l frequency &		ıde usir	ng funct	ion gene	rator.	
CO2	Demo	onstrate	introd	uctory	know	ledge	of sof	tware fo	or sche	matic capture	, circuit	simul	ation, a	nd circu	it board	
	layou	ıt.				_				_						
CO3	Anal	yze the	charac	teristic	es of d	lifferer	nt elec	tronic d	evices	and circuits	such as	diodes	, transi	stors, r	ectifiers,	
	-	ifiers et												ŕ	,	
CO4	_			syster	ns and	technic	cally p	resent th	nem							
								% PSC		ning						
					PRC			OUTCO		8				PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1		2	
CO1		1	1													
CO2		2	2													
CO3		1	1													
CO4		2	2													
Avg.		1.5	1.5													

List of Experiments:

EXPERIMENTS: 1 Familiarization of electronic components and devices (Testing of semiconductor diodes and transistors using digital multi meter)

EXPERIMENTS: 2 Study and use of Oscilloscope, signal generator to view waveforms and measure amplitude and frequency of a given waveform.

EXPERIMENTS: 3 V-I characteristics of semiconductor diode

EXPERIMENTS: 4 Studies on half-wave and full-wave rectifier circuits without and with capacitor filter; recording of the waveforms and measurement of average and rms values of the rectifier output.

EXPERIMENTS: 5 Studies on clipper circuit.

EXPERIMENTS: 6 Studies on clamper circuit.

EXPERIMENTS: 7 V-I characteristic of an n-p-n or p-n-p transistor, DC biasing the transistor in common-emitter configuration and determination of its operating point (i.e., various voltages and currents).

EXPERIMENTS: 8 MOSFET I-V characteristics

EXPERIMENTS: 9 Studies on Logic gates (Truth table verification of various gates).

EXPERIMENTS: 10 Studies and experiments using ADDER CIRCUITS ICs

LAB	CO	DE			NA	ME	OF 7	гне і	LAB		L	T	P	C	QP
BBS	ES11	42	BA	SIC				L ENC		ERING	0	0	2	1	
			•				Pr	e –Requ	uisite:		•				
								lucation		ectives					
CEO1	To kı	now the	basic c	oncep	ts on d	ifferen	t types	of circu	iits.						
Course (Outcon	nes: Upa	on succ	cessful	comp	letion (of this	course,	studen	ts should be a	ıble to:				
CO1	Illust	rate the	transfo	rmers											
CO2	Anal	yse vario	ous ele	ctrical											
CO3	Exan	nine the	charac	teristic	s of A	C and	DC ma	achines							
CO4	Disti	nguish tl	he met	hods o	f speed	l contr	ol of D	C moto	rs						
						(CO-PO	& PSC) Марр	ing					
COs					PRC	GRA	MME	OUTC	OMES					PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1		1	2												
CO2		2	2												
CO3		1	2												
CO4		2	2												
Avg.		1.5	2												

List of Experiments:

- 1. Study of different electrical equipment's (transformer, single phase motors)
- 2. Power factor improvement using capacitor for fluorescent lamp.
- 3. Verification of Superposition and Thevenin's theorem
- 4. Measurement of reactive power by using single watt-meter method
- 5. 3phase Power measurement by using two wattmeter methods.
- 6. Calculation of current, voltage and power in series R-L-C circuit excited by single-phase AC supply and calculation of power factor.
- 7. Determination of open circuit characteristics (OCC) of DC shunt generator
- 8. Starting and speed control of a dc shunt motor by (a) field flux control method, and (b) armature voltage control method.
- 9. V-I characteristics of incandescent lamps and time-fusing current characteristics of a fuse.
- 10. Connection and testing of a single-phase energy meter.

SUE	JEC'	T		NAM	E O	F TH	E SU	BJE	CT		L	Т	P	C	ΩD		
C	ODE										L	1	r		QP		
DDC	ES11:	50	PRC)GRA	MM	ING	FOR	PRO)BL	EM	3	0	0	3	A		
DDS	C311	30		SOLV	VING	LA	BOR	ATO	RY		3	U	U	3	A		
		•					Pre –R										
						ourse I											
CEO1			programs									ointers ar	nd struct	ure.			
CEO2	To a		different p														
CO1	Toι	ındersta	nd operati	debug a	nd execu	ıtion											
	proc			comes: Upon successful completion of this course, students should be able to: perating system and its simple commands, writing programs, compilation, debug and execution trams using loop controls, arrays and understand the complexity using different programs.													
CO2																	
CO3			programs														
CO4		ındersta tionality	nd numeri /.	cal prob	olems,	develo _l	p progr	ams u	sing p	ointers , s	tructures	and under	rstand th	eir			
		-				CO-P	O & P	SO M	appii	ng							
COs				P	ROGE	RAMM	E OU	ГСОМ	IES					PSOs			
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2			
CO1	3	2	2														
CO2	3	3	3	1													
CO3	3	3	3														
CO4	3	3	3	1											·		
Avg.	3	2.75	2.75	0.5													
						S	SYLL	ABU	JS	·		·			·		

Tutorial 1: Problem solving using computers:

Lab1: Familiarization with programming environment

- 1) Introduction to OS: Before starting experiments explain the facilities and operations of OS.
- 2) Introduction to the C compiler, Compilation and Execution Process & writing simple programs.

Tutorial 2: Variable types and type conversions:

Lab 2: Simple computational problems using arithmetic expressions

- 1) WAP to input radius of a circle and Find the area, perimeter of it.
- 2) WAP to input two numbers and swap them without using intermediate variable.
- 3) Write a program to accept Fahrenheit and calculate its equivalent Celsius.

Tutorial 2: Variable types and type conversions:

Lab 2: Simple computational problems using arithmetic expressions

- 1) Write a program to input principle amount, no. of terms and rate of interest. Find simple interest.
- 2) WAP to input three unequal numbers and find the greatest using conditional operator.
- 3) Write a program to input a float value and display its integer part & fractional part separately.

Tutorial 3: Branching and logical expressions:

Lab 3: Problems involving if-then-else structures

- 1) Write a program to find the real roots of a quadratic equation when three co-efficient values are given.
- 2) Write a program to input a lower case alphabet and test whether it is vowel or consonant.
- 3) Write a program to find the greatest among three numbers.

Tutorial 4: Loops, while and for loops:

Lab 4: Iterative problems e.g., sum of series

- 1) Write a program to generate Fibonacci series of N numbers.
- 2) Write a program to find the greatest common divider of two positive numbers given.
- 3) Write a program to accept a positive integer and test it for palindrome or not.
- 4) Write a program to calculate the following sum:

Sum = $1-(x^2)/2! + (x^4)/4! - (x^6)/6! + (x^8)/8! - (x^10)/10!$

5) Write a program to generate the following pyramid.

Tutorial 5: 1D Arrays: searching, sorting:

Lab 5: 1D Array manipulation

1) Write a program to accept 10 integers in to an array and find largest and smallest integers present in them.

- 2) Write a program to apply binary search on an array having elements in sorted order.
- 3) Write a program to accept 10 numbers in to an array and sort it using insertion sort in ascending order.

Tutorial 6: 2D arrays and Strings

Lab 6: Matrix problems, String operations

- 1) Write a program to input elements 4x4 matrix. Find the principal diagonal of them.
- 2) Write a program to input values into two matrices A(3x4), B(4x3). Perform matrix multiplication and display the resultant matrix.
- 3) Write a program to accept a string and test whether it is palindrome or not using string handling functions.

Tutorial 7: Functions, call by value:

Lab 7: Simple functions

- 1) Write a C program which contains three UDF's namely add(), subtract() and multiply(). Each function accepts two integers as their arguments and calculate and return the results
- 2) Write a program to create an UDF and test a number is prime or not.
- 3) Write a program to find the factorial of a given number using UDF.

Tutorial 8: Recursion, structure of recursive calls

Lab 8: Recursive functions

- 1) Write a program to find greatest common divisor of two integers using recursive functions.
- 2) Write a program to accept 10 elements into an integer array. Find the largest element present using recursive function.
- 3) Write a program to generate Fibonacci series using a recursive function.

Tutorial 9: Numerical methods (Root finding, numerical differentiation, numerical integration):

Lab 9: Programming for solving Numerical methods problems

- 1) Write a program to implement Newton-Raphson Method.
- 2) Write a program to implement Euler's method.

Tutorial 10: Pointers, structures and dynamic memory allocation

Lab 10: Pointers and structures

- 1) Write a program to create user defined function called swap having two integer pointers as its arguments and it has no return value. Call this function using call-by-address.
- 2) Write a program to store 'n integers using dynamic memory allocation. Find the average value of the integers using a user defined function.
- 3) Write a program to input 11 cricket players' details using a structure array having member's player name, team name, batting average. Create a function which will display the player name whose batting average is >=30.
- 4) Write a program to create a structure for product having members like product code, price and quantity. Store N product details using dynamic memory and display them.

SUBJECT					NA	ME	OF T	HE LA	AB		\mathbf{L}	T	P	C	QP
C	CODE														
RRSI	BBSHS 1160			COMMUNICATIVE ENGLISH AND									2.	1	
DDSI	DD3113 1100			SO	FT S	KILI	0	0		1					
	Pre –Requisite:														
									Objectives						
CEO1	7 5 71														
CEO2															
CEO3	To enable students to participate in group discussions through proper listening and speaking.														
CEO4									peech and w						
Course C	Outcomes:	Upo	on suc	cessful	compl	etion o	f this c	ourse, sti	idents shoul	ld be ab	le to:				
CO1	Memoriz														
CO2	Use gram	ımaı	r for ef	fective	speaki	ng in C	3D and	other for	mats of spe	aking					
CO3	Able and	def	end in	conver	sationa	l and p	ublic sp	peaking c	ompetencies	S.					
CO4	Develop	acti	ve liste	ening a	nd spea	king sk	cill in d	ifferent r	eal life situa	tion					
						CC)-PO &	PSO M	apping						
					P	ROGR	RAMM	E OUTC	OMES					PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11		12	1	2
CO1										2	1				
CO2									2	2					
CO3									2	2					
CO4										2			1		
Avg.									1	2	0.25	0	.25		

Phonetics & Listening Skills 16 hours = 8 classes [2 listening tests x 10 marks = 20 marks]

Vowels, diphthongs, consonants, consonant clusters; The International Phonetic Alphabet (IPA); phonemic transcription; Problem sounds; Syllable division and word stress; Sentence rhythm and weak forms; Contrastive stress in sentences to highlight different words; Intonation: falling, rising, and falling-rising tunes; Listening to Newspaper reading/Video, etc. Listening with a focus on pronunciation (ear-training): segmental sounds, stress, weak forms, intonation & Listening for comprehension. Reading of English daily newspapers and self-development books be integrated listening and speaking activities.

Speaking skills 16 hours = 8 classes

[4 speaking tests x 10 = 40 marks]

- Topics for 1 minute, 2 minutes, and 5 minutes speaking
- Pictures, Quotations, Attitude-testing Questions may be used.
- Summarizing/responding to handouts, articles, books, magazines and newspapers.

Individual/Group presentations/discussion on given topics

Soft skills development 14 hours = 7 classes

[4 assignments x 10 = 40 marks]

Positive thinking (Teachers to engage game/activity-oriented classes)

Teaching Methods: Chalk& Board/ PPT/Video Lectures

Text/Reference Books:

- 1. Business and Corporate Soft skills developed by Rai Tech. University (PDF available)
- 2. Spoken English (with CD). Sasikumar V and P V Dhamija. New Delhi: Tata McGraw-Hill Education Pvt. Ltd. (2nd Ed.)

SUBJECT CODE			TI	TLE	OF T	гне	SUE	ВЈЕСТ		L	Т	P	С	QP	
BBS	ES117	1	ENGINEERING DRAWING									0	2	1	
Pre –Requisite:															
Course Educational Objectives															
CEO1 To enable students to acquire and use engineering drawing skills as a means of accurately and clearly communicating ideas, information and instructions															
CEO2	To applie students to acquire requisite knowledge techniques and attitude required for advanced study of											f			
Course (Outcomes	s: Upa	on succ	cessful c	omple	tion of	this c	ourse,	students sh	ould be	able to:				
CO1				ws of di											
CO2	Constru	ct pro	jection	of plan	e surfa	ce and	solids	S.							
CO3	Develop	Sect	ions of	f various	Solids	s surfac	e.								
CO4	Identify	the p	rojecti	on in iso	metric	scale.									
						CO	-PO &	& PSO	Mapping						
COs	PROGRAMME OUTCOMES													PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1	2			2											
CO2	1			3											
CO3	2			3											
CO4	1			2											
Avg.	1.5			2.5											

Unit 1

- **1.** Introduction: Introduction to Standards for Engineering Drawing practice, Line work and Dimensioning. [1 Sheets]
- 2. Co ordinate system and reference planes: Definitions of HP, VP, RPP & LPP. Selection of drawing size and scale. Representation of point and line. [1 Sheets]

Unit 2

- 3. Orthographic Projections: Introduction, Definitions Planes of projection, reference line, Projections of points in all the four quadrants, Projections of straight lines (located in First quadrant/first angle only), True and apparent lengths, True and apparent inclinations to reference planes.

 [1 Sheets]
- **4.** Orthographic Projections of Plane Surfaces (First Angle Projection Only): Introduction, Definitions—projections of plane surfaces—triangle, square, rectangle, hexagon and circle. [1 Sheets]
- **5.** Projections of Solids (First Angle Projection Only): Introduction, Definitions Projections of right regular tetrahedron, hexahedron (cube), prisms, cylinders and cones in different positions.

Unit 3

6. Sections and Development of Lateral Surfaces of Solids: Introduction, Section planes, Sections, Sections, Sections, Sections of right regular prisms, pyramids, cylinders and cones resting with base on HP.
[2 - Sheets]

Unit 4

7. Isometric Projection (Using Isometric Scale Only): Introduction, Isometric scale, Isometric projection of tetrahedron, cones and spheres. [1 – Sheets]

Teaching Methods: Chalk& Board

TEXT BOOKS

- 1. Engineering Drawing N.D. Bhatt & V.M. Panchal, Charotar Publishing House, Gujarat.
- 2. Computer Aided Engineering Drawing S. Trymbaka Murthy, I.K. International Publishing House Pvt. Ltd., New Delhi 1. 3. Engineering Drawing by N. S. Parthasarathy and Vela Murali Oxford University Press.

SUBJECT CODE				7	ΓΙΤΙ	E O	FTE	IE SU	JBJE	CT	L	T	P	C	QP
Bl	BSES1	172		EN	IGIN	NEERING WORKSHOP 0							2	1	
	Pre Requisite: Course Educational Objectives														
	_														
CEO1	To enable students to work on different trades like Fitting, Carpentry, Black smithy etc which makes the													kes the	
	students to learn how various joints are made using wood and other metal pieces														
CEO2	To familiarize with the basic manufacturing processes and to study the various tools and equipment used, hands												l, hands		
	on training is given in different sections														
	urse Outcomes: Upon successful completion of this course, students should be able to:														
CO1	Explain various safety precaution and use of various hand tools														
CO2	Demor	istrate tl	he prod	cess conf	igurat	ion and	d basic	mecha	nism of	different m	achines l	ike Lat	he, Sha	per and	Milling
	machir														
CO3		•	pply su	uitable to	ols fo	r macl	nining	process	ses incl	uding turnin	g, thread	cutting	g, facing	g, knurl	ing and
	drilling														
CO4	Practic	e on ma	nufact	uring of	compo					es including	fitting ar	nd weld	ing		
	_								Mappir	ıg					
COs]	PROG	RAM	ME O	UTCO	MES					PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1	1			1											
CO2	2			2											
CO3	1			3											
CO4	1			3											
Avg.	1.25			2.25											

Unit 1

- 1. Safety Precaution: To study the various Safety precautions in workshop.
- 2. Fitting
- (i) Study of different hand tools and Machine tools used in fitting.
- (ii) Preparation of a male and female fitting job by using different hand tools.

Unit 2

- 3. Machining:
- (i) Study of various components and working principle of lathe machine
- (ii) Preparation of a cylindrical job by lathe (turning, Thread cutting, knurling)
- (iii) Study on Shaper and Milling Machine

Unit 3

- 4. Welding Practice:
- (i) Hand on practice on Electric Arc Welding to prepare Lap Joint, Butt Joint, T Joint and Corner Joint .
- (ii) Study of Oxyacetylene Gas welding and Gas cutting.

Teaching Methods: Chalk & Board, Hands on practice.

Reference Books:

- 1. Elements of Workshop Technology, Vol. I and II by Hajra choudhary, Khanna Publishers
- 2. Workshop Technology by WAJ Chapman, Viva Books
- 3. Workshop Manual by Kannaiah / Narayana, Scitech Publicaitons(P) Ltd.

II SEMESTER [FIRST YEAR]

Sl. No.	Course Category	Course Code	Course Title	L	Т	P	Credits
		-1	THEORY			I.	
1	BS	BBSBS2010	Engineering Mathematics-II	3	1	0	4
_		BBSBS1021	Engineering Physics	3	0	_	_
2	BS	BBSBS1022 Engineering Chemistry				0	3
2	EG	BBSES1031	Basics of Mechanics	2	0	0	2
3	ES	BBSES1032	Basics of Thermodynamics	3	0	0	3
4	ES	BBSES1041	Basics of Electronics	3	0	0	2
4	ES	BBSES1042	Basics of Electrical Engineering	3	0	0	3
5	ES	BBSES2050	Data Structure using 'C++'	3	0	0	3
6	HS	BBSHS2060	Communicative English-II	2	0	0	2
		PRAC	CTICAL / SESSIONAL				
7	BS	BBSBS1121	Engineering Physics Laboratory	0	0	2	1
/	DS	BBSBS1122	Engineering Chemistry Laboratory		U	2	1
		BBSES1141	Basics of Electronics Laboratory				
8	ES	BBSES1142	Basics of Electrical Engineering Laboratory	0	0	2	1
9	ES	BBSES2150	Data Structures using 'C++' Laboratory	0	0	2	1
10	HS	BBSHS2160	Communicative English-II Laboratory	0	0	2	1
11	ES	BBSES1171	Engineering Drawing	0	0	2	1
11	E3	BBSES1172	Engineering Workshop		U		1
12	MC	BBSHS2180	YOGA	-	=	-	0
		17	1	10	23		

SUBJ	ECT	CODE		7	[TL]	E OF	THE	SUB	JEC ⁷	Γ	L	T	P	C	QP
BB	SBS 2	2010	F	ENGI	NEE	RING	MA	THE	MAT	ICS-II	3	1	0	4	A
							Pre -Red	quisite:			•				
					C	ourse I	Educatio	onal O	bjectiv	es					
CEO1		cus on parti													
CEO2	To n	nake them u	nders	stand al	out lap	lace ar	nd fourie	er trans	form.						
CEO3	To ca	lculate the g	gradi	ents an	d direct	ional d	erivativ	es of fu	inctions	s of severa	ıl varia	bles			
CEO4		troduce the mechanics,								n that find	s appli	cations	in vari	ous fields	like
Course C										ould be a	ble to:				
CO1	To know how to solve the partial differential equation by suitable method.														
CO2	To know how to solve the partial differential equation by suitable method. To Solve Ordinary differential and integral equation by using Laplace transform,														
CO2		ate the techr										Engine	ering M	Iathemati	cs.
CO3	To re	late gradien	t, cui	l and d	iverger	ice and	its appl	ication	in fluid	d dynamic	s.				
CO4		aluate multi								ergence tl	neorem	to give	e physi	ical	
	interp	retation of t	he cu	url and	diverge										
							PO & PS								
COs				P		AMM	E OUT					1	<u> </u>	PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3				2		1					1			
CO2	3	3			1										
CO3	2				1										
CO4	2				2							1			
Avg.	2.5	0.75			1.5		0.25					0.5			

UNIT - I (07 Hours)

INTRODUCTION OF PARTIAL DIFFERENTIAL EQUATIONS:

Formation of Partial differential equations, Linear partial differential equation of first order: Lagrange's linear differential equation, Non-Linear partial differential equation of first order by Charpit's method.

UNIT-II (20 Hours)

Laplace Transforms: Definition, existence of Laplace Transforms, Properties of Laplace Transforms, Evaluation of integrals by Laplace Transforms, Inverse transforms, convolution theorem, transforms of unit step function, unit impulse function, periodic function. Simple application to ordinary differential equations by Laplace Transform method, Definition of Fourier Integral and Fourier transform

UNIT - III (10 Hours)

Vector differential calculus: vector and scalar functions and fields, Derivatives, Curves, tangents and arc Length, gradient, divergence, curl and their simple application

UNIT – IV (13 Hours)

Vector integral calculus: Definition and evaluation of double integration and triple integration, Evaluation of line integral, Surface integral and volume integral and their applications, Transformations theorems- Green's Theorem in plane, Stoke's Theorem, Gauss Divergence Theorem and their applications.

Teaching Methods: Chalk& Board/ PPT/Video Lectures

Prescribed Books

1. Advanced Engineering Mathematics by E. Kreyszig, John Willey & Sons Inc. 10th Edition

References:

- 1. Higher Engineering Mathematics by B. V. Ramana, Mc Graw Hill Education.
- 2. Higher Engineering Mathematics by BS Grewal: Khanna Publishers, New Delhi.
- 3. Advanced Engineering mathematics by H. K. Dass.

SUBJ	ECT (CODE		Tl	TLE	OF	THE	SUB.	JEC ⁷	Γ	\mathbf{L}	T	P	C	QP
BE	SBS1	021		E	NGIN	NEEI	RING	PHY	SIC	8	3	0	0	3	A
			P	re –Re	equisite	e: Kno	wledge	in +2 l	Physics	s and Ma	themat	ics			
							e Educa								
CEO1	Provid	ing fundan	nenta	al knov	vledge	about	the osci	llation	s and v	vaves					
CEO2	To fan	niliar with s	struc	ture ar	nd prop	perties	of mater	rials.							
CEO2	Provid	ding know	ledg	ge of	mathe	matica	l conce	epts to	solv	e electro	omagne	etic pr	oblem	s and	fundamental
CEO3	inform	ation abou	t Qu	antum	mecha	anics w	ith appl	ication	s.						
Course	Outcomes: Upon successful completion of this course, students should be able to:														
CO1	Understand and analyze the concept of oscillation and wave mechanics. Describe the principle of lasing and optoelectronics devices in communication system														
CO2	Descri	be the prin	ciple	of las	ing an	d opto	electroni	ics dev	ices in	commun	icatior	systei	n		
CO3		n the ideas													
CO4		et the fund												tions.	
CO5	Expres	ss the basic	s of	quantu	ım med						echanio	cal pro	blems.		
	1)-PO &]			<u> </u>			1		
COs		_	_			1	E OUT						1 .	PS	SOs
	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1		3	2												
CO2					3		1								
CO3		3			1										
CO4	3		2												
Avg.	0.75	1.5	1		1		0.25								

UNIT: 01 (12 Hours)

Interaction of Wave and Matter

Simple Harmonic Oscillator, Damped harmonic oscillator and Forced harmonic oscillator, and coupled oscillator, Waves and its Characteristics, Superposition of Waves, Interference by division of wave front (Bi-prism experiment) and division of amplitude (Newton's Ring experiment). Introduction to Diffraction, types of diffraction.

LASER, spontaneous & stimulated emission, Einstein's relation, Ruby Laser and He-Ne Laser, Semiconductor laser, application of Laser. Optical fiber, Acceptance angle, Numerical aperture, Skip distance, Step index and Graded index fibers, Attenuations in optical fibers, applications of optical fiber in communication systems.

UNIT: 02 (12 Hours)

Physics of Materials

Introductions to materials, Crystallography, Crystal structure, crystal direction and plane, Miller indices, Inter planar spacings, Reciprocal Lattice and its characteristics, Reciprocal Lattice of SC, FCC and BCC, Brillouin Zone, Bragg's law. Energy bands in solids (conduction band, valence band and Fermi level), Classification of materials on the basis of band theory. Magnetic properties of Materials & their applications. Nano materials and applications (particulates, thin films, nano structures, etc.)

UNIT: 03 (10 Hour)

Electromagnetic theory and wave

Review of grad, divergence and curl, Gauss divergence theorem and Stoke's theorem (no derivations), fundamental laws of electrostatics, magneto-statics and electromagnetism, displacement current and conduction current, Maxwell's equations. Electromagnetic wave and its characteristics, electromagnetic wave equation for free space and in charge free conducting medium, electromagnetic energy, Poynting vector and Poynting theorem.

UNIT: 04 (12 Hours)

Quantum Mechanics

Introduction to dual nature: Black body radiation, photoelectric effect, Compton effect (qualitative idea only), de-Broglie's hypothesis, Heisenberg's uncertainty principle and its application to non-existence of electron inside the nucleus and ground state energy of one dimensional harmonic oscillator, Basic postulates of Quantum Mechanics, Wave function and its characteristics, probability density, normalization, eigen values, eigen functions and expectation values, Schrödinger's equation (time dependent and time independent). Application of Schrödinger equation to one dimensional potential well, potential step and potential barrier (qualitative ideas).

Teaching Methods: Chalk& Board/ PPT/Video Lectures

Text Books:

1. Engineering Physics by D. K. Bhattacharya and Poonam Tanden, Oxford University Press.

2. Engineering Physics, H K Malik and A K Singh, Tata McGraw Hill, MGH.

Reference Books:

- 1. Materials Science & Engg., V. Raghvan, Prentice Hall of India.
- 2. Concepts of Modern Physics, A. Beiser, S. Mahajan, S.R. Choudhary, Tata McGraw Hill.
- 3. Lasers & Optical engineering, P Dass, Narosa Publishers, Springer Publisher.
- 4. Engineering Physics by B. B. Swain and P. K. Jena, Kitab Mahal, Cuttack
- 5. Quantum Mechanics by SatyaPrakash, Kitab Mohal, etc. Kedar Nath Ram Nath Publisher

SUBJ	ECT	CODE		TI	TLE	OF 7	ГНЕ	SUB.	JECT		L	T	P	C	QP
BI	SBS1	.022		ENG	INE	ERIN	VG C	HEM	ISTI	RY	3	0	0	3	A
			•			Pre –I	Requisi	te: Ch	emistry	y			•		
								ional (
CEO1										e field of		ering			
CEO2										lar levels					
CEO3										vater treat					
CEO4						-			_	ntion of co	orrosio	1.			
CEO5		ighten the													
	Outcomes: Upon successful completion of this course, students should be able to: Analyze microscopic chemistry in terms of atomic and molecular orbital and Explain, the ranges of the														
CO1	Analyze microscopic chemistry in terms of atomic and molecular orbital and Explain the ranges of the electromagnetic spectrum by electronic transition														
CO2		y water tr							rial pu	rposes					
CO3		are types													
CO4	Under	stand vari	ous type	s of po	lymers.					h applicat	ions				
								SO M	<u> </u>						
COs			1	PR	OGRA	MME	OUT	COME	S		1			PSC	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1	3	2	2	2		2	3								
CO2	3	3	1	2		2	3								
CO3	3	3	2	1		2	3								
CO4	3	3	2	1		2	3								
Avg.	3	2.75	1.75	1.5		2	3								

UNIT-1 ATOMIC AND MOLECULAR STRUCTURE

(13 Hours)

Schrodinger's wave equation(no derivation), Significance of wave functions, Particle in a box, Application for conjugated molecule, Molecular Orbital theory and Energy level diagram for Diatomic molecules, Spectroscopic techniques and applications: Electronics spectroscopy, Vibrational and rotational spectroscopy of diatomic molecules.

UNIT-2 WATER CHEMISTRY

(13 Hours)

Types of Hardness, Determination of Hardness by EDTA method, Treatment of water for Domestic use, Water softening processes Lime-soda process, Ion Exchange method, Boiler feed water, Scale and Sludge, Caustic embrittlement, Carbonate and phosphate conditioning, Colloidal conditioning, Calgon conditioning.

UNIT-3 CORROSION (10Hours)

Thermodynamic functions: Entropy, Free energy, Relation between E.M.F and free energy, The Nernst's equation and application, Definition of corrosion, Types of corrosion: Dry corrosion and wet corrosion, Galvanic corrosion, Concentration cell corrosion, Factors influencing corrosion, Corrosion control: Cathodic protection (Sacrificial anodic protection and Impressed current cathodic protection), Inhibitors, Protective coatings: Galvanization and Tinning.

UNIT -4 POLYMER CHEMISTRY

(12 Hours

Introduction, polymer, Classification of polymers, Plastics: Thermosetting and thermo plastic, PVC, PE, PS, PMMA, PTFE, Bakelite, Nylon-6, 6, Nylon-6, Fiber reinforced plastic.

*ADD-ON COURSES: Conducting Polymer (Polyaniline, Polyacetylene), Bio-Degradable and Non-Bio Degradable polymer, Nano composite.

Teaching Methods: Chalk& Board/PPT/Video Lectures

Text Books: 1.Engineering chemistry by Jain & Jain, Dhanpat Rai publishing company (p) Ltd

Reference Books:

- 1. A Text Book of Engineering Chemistry by S.S.Dara, S Chand Publishers.
- 2. A Text Book of Engineering Chemistry by SashiChawla, Dhanpat Rai Publishing house.
- 3. Text Book of Engineering Chemistry, 2nd edition, by R.Gopalan, D.Venkapaya & Sulochana Nagarajan, Vikas Publishing House Pvt. Ltd.
- 4. B. Tech Chemistry- I and II by P. K. Kar, S. Dash, B. Mishra kalyani publishers.
- 5. Physical Chemistry By P.W Atkins
- 6. Engineering Chemistry(NPTEL Web Book) by B . L Tembe, Kamaluddin and M.S. Krishna
- 7. Fundamentals of Molecular spectroscopy By C. N Banwell
- 8. University chemistry by B.H. Mahan

SUBJ	ECT	CODE	E	T	ITL	E OF	THE	E SUI	BJEC	CT	L	T	P	C	QP
BE	SES1	1031		В	BASI	CS O	F MI	ECH	ANIC	CS	3	0	0	3	A
			•		Pr	e –Req	uisite:	Physic	s, Math	nematics	•	•	•		
						Course	e Educ	ationa	l Obje	ctives					
CEO1	To ap	ply the e	stabli	ished e	nginee	ring m	ethod t	o comp	olex en	gineering	proble	m.			
CEO2	To un	derstand	the v	ectoria	al and	scalar r	eprese	ntation	of forc	es and m	oments				
CEO3	To ev	aluate the	e diff	ferent f	orces e	exhibit	in trus	s memb	oer.						
CEO4	To ob	tain the l	cnow	ledge o	on kin	ematic	s and k	inetics	of part	icle to an	alyze si	imple a	nd prac	ctical pr	oblems
Course		Outcomes: Upon successful completion of this course, students should be able to: Determine the resultant force and moment for given force system.													
CO1	Determine the resultant force and moment for given force system. Evaluate the forces in members of trusses, frames and problems related to friction.														
CO2															
CO3										moment		ia			
CO4	Adap	t the laws	s of n	notion,	kinem					terrelatio	nship				
									Mappir	ng					
COs				P	ROG	RAMN	1E OU	TCON	AES					PSC	Os
	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1	3	2													
CO2	2	3													
CO3	3	3													
CO4	2	3													
Avg.	2.5	2.75													

UNIT:1 [16 Hours]

STATICS OF PARTICLES

Fundamental concepts and principles of engineering mechanics. Resolution of forces Resultant of several concurrent forces Free body diagram. Principles of transmissibility. Moment of a force Varignon's theorem Equivalent system of forces Types of supports and corresponding reactions.

UNIT:2 [12 Hours]

ANALYSIS OF TRUSSES AND FRICTION

Introduction to Truss Analysis of Trusses Method of joints, Method of sections.

Laws of Friction Angle of Friction Angle of Repose Ladder and Wedge Friction

UNIT:3 [12 Hours]

PROPERTIES OF SURFACES

Determination of first moment area of plane figures by integration – Determination of centroid of composite figures by using standard formula.

Determination of second moment area of plane figures by integration Parallel and perpendicular axis theorems Determination of area moment of inertia of composite figures by using standard formula Polar moment of inertia Radius of gyration.

UNIT:4 [10 Hours]

DYNAMICS OF PARTICLES

Rectilinear motion: uniform velocity and uniformly accelerated motion Newton second law D'Alembert's principle and its applications work and energy equation Impulse and Momentum Impact of elastic bodies.

Teaching Methods: Chalk& Board/ PPT/ Guest Lecture

Text Books:

- 1. Timoshenko, and Young, "Engineering Mechanics", Tata Mc Graw Hill Book
- 2. S. S. Bhavikatti, "Engineering Mechanics", New Age International

Ref. Books:

- 1. Dr. Bansal.R.K, & Sanjay Bansal, "A Text book of Engineering Mechanics", Lakshmi publications.
- 2. A.K. Tayal, "Engineering Mechanics Statics And Dynamics", Umesh Publications
- 3. Rajasekaran.S, & Sankarasubramanian.G, "Engineering Mechanics", Vikas Publishing House Pvt Ltd, 2011

SUBJ	ECT C	ODE			TIT	LE OF	THE S	SUBJE	CT		L	T	P	C	QP
BB	SES103	32		B	ASICS	OF TH	IERM	ODYN	AMICS	S	3	0	0	3	A
				Pı	re –Rec	quisite:	Physic	cs, Che	mistry	and Math	ematic	S			
						Cou	rse Edi	ucation	al Obj	ectives					
CEO1			•							ssure, tem		etc.			
CEO2	Apply	principle	and	law of	thermo	dynam	ics to a	nalysis	of diffe	erent system	ms				
CEO3	Beco	me aware	of re	levanc	e of env	vironme	ental an	d socia	l issues	on the ana	alysis pı	rocess o	f systen	ns.	
CEO4	To u	nderstand	the	basics	of pr	opertie	s of p	ure sub	stance	like stea	m and	its cor	nditions	and A	application of
	Thern	nodynami	cs in	engine	ering p	ractices	S								
	Course Outcomes: Upon successful completion of this course, students should be able to:														
CO1	Explain the basic concepts of system, control volume, thermodynamic properties, thermodynamic equilibrium,														
	tempe	rature, w	ork aı	nd heat	energy	•									
CO2	Apply	the laws	of th	nermod	ynamic	s to ref	rigerato	ors, hea	t engine	es, heat pu	mps coi	mpresso	rs and r	nozzles	etc.
CO3	Interp	ret and a	pply	the con	cept of	entrop	y to the	rmodyr	namic s	ystems					
CO4	Evalu	ate prope	rties (of pure	substai	ices, ga	ises and	d their r	nixture	s and to de	rive and	apply	to thern	nodynar	nic problems.
						C	CO-PO	& PSO) Марр	oing					
COs					PROG	RAMN	ME OU	TCOM	1ES					PS	Os
COS	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1	3	2													
CO2	2	3													
CO3	2	3													
CO4	3	3													
Avg.	2.5	2.75										_			

UNIT 1 (15 Hours)

Basic concepts & definition, scope of thermodynamics. Macroscopic & microscopic approach. Definition of fixed mass (closed) system & control volume (open) system, isolated system. Thermodynamic properties (extensive & intensive), state & its representation on a property diagram, process and its representation, cyclic process Characteristics of properties (point & path function), reversible & irreversible process, Quasistatic Process. Thermodynamic equilibrium. Pressure, Types of pressure, Zeroth law of thermodynamics & temperature scales, calibration of thermometers. Ideal gasses & their P V T relation. Energy transfer; Work transfer(definition & calculation), different modes of work Displacement work for various process, Free expansion work, Heat transfer; modes of heat transfer, basic laws in conduction, convection & radiation.

UNIT 2 (13 Hours)

First law of thermodynamics, formal statement (using cyclic process) first law for processes of fixed masses (closed system) Introduction of internal energy, enthalpy as thermodynamic properties Definition of sp.heats (C_p & C_v) and their use in calculation of internal energy & enthalpy with emphasis on ideal gas. Application of first law to control volume (Steady Flow); nozzle, diffuser, compressor, turbine, throttling device.

UNIT 3 (12 Hours)

Second law of thermodynamics, Kelvin Planck & Clausius statements, Carnot cycle. Reversible & irreversible engines and their efficiency (Thermal and maximum Efficiency)

Entropy concepts, Clausius inequality, Entropy Principle.

UNIT 4 (10 Hours)

Properties of pure substance, P v, T s, h s diagram for steam , Steam properties, Introduction to steam table with respect to specific volume, pressure, temperature, enthalpy & entropy, Mollier Diagram. Application of thermodynamics: Steam power plant, Refrigerators and Heat Pump, I C Engines (working principle with schematic diagrams only)

Teaching Methods: Chalk& Board/ PPT

Text Books:

- 1 Engineering Thermodynamics by P.K.Nag, Publisher: TMH
- 2 Basic Engineering Thermodynamics by D S Kumar, Publisher: S K Kataria & Sons New Delhi.

Ref. Books

- 1. Fundamental of Engineering Thermodynamics by E. Rathakrishnan, publisher. PHI
- 2. Thermodynamics: An Engineering Approach by Yunus A. Cengel, Michael A. Boles Publisher: Mcgraw Hill Education
- 3. Thermal engineering by R.K.Rajput, Laxmi Publications Pvt. Ltd.
- 4. Steam Tables in SI Units by K. Ramalingam, Scitech Publications (P) Ltd.

SUBJ	ECT (CODE		TI	TLE	OF TI	HE S	UBJE	CT		L	T	P	C	QP
	SES1							TRON		3	3	0	0	3	A
						Pre-re	equisit	es (if an	y):				ı		
					Co			nal Ob		es					
CEO1	Identif	y the basi	c to	ols and	test equ	ipment	used to	o constr	uct, tı	roublesh	oot, an	d maiı	ntain s	standa	rd electronic
	circuit	s and syste	ems.												
CEO2	Explai	n the cons	struc	tion and	l applica	tion of	standa	rd circu	it con	figurati	ons and	ident	ify the	e com	ponent types
	and co	nnections	used	l to build	d functio	ning ele	ectroni	c circuit	s.						
CEO3	Design	simple co	ombi	national	and sec	quential	logic c	circuits							
CEO4	Identif	y function	is o	f digital	multin	neter, ca	athode	ray osc	illosc	ope and	l transc	lucers	in th	e mea	surement of
	physical variables Course Outcomes: Upon successful completion of this course, students should be able to:														
	Co	Course Outcomes: <i>Upon successful completion of this course, students should be able to:</i> Recognize different components such as transistors, resistors, capacitors and diodes which fit on a small chip													
CO1	Recog	nize differ	ent o	compon	ents suc	h as trai	nsistor	s, resisto	ors, ca	apacitors	and di	odes v	vhich	fit on	a small chip
	with ea	ach leg of	the c	hip con	necting	to a poi	nt with	in the ci	rcuit.						
CO2	Apply	modern m	odel	lling sof	tware fo	r draftir	ng diffe	erent ele	ctroni	ic circui	ts.				
CO3	Analyz	ze modern	elec	tronic c	ircuits a	nd syste	ms.								
CO4	Formu	late math	emat	ical des	cription	s and p	rocedi	ires in	desig	ning ne	w electi	ronic	systen	ns and	d technically
	presen	t													
						CO-PO	& PS	O Map	ping						
COs				PF	ROGRA	MME (OUTC	OMES							SOs
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1		1			2		2								
CO2	1			2	3	1		1							
CO3				2								1		<u> </u>	
CO4	0.25	2		3	1.05	0.25	0.5	0.25			1	1		1	
Avg.	0.25	0.75		1.25	1.25	0.25	0.5	0.25			0.25				

UNIT-1

Semiconductor Devices:- Classification of material, Energy band diagram, properties of semiconductors, Types of semiconductors, Semiconductor diode (no bias, forward, reverse), temperature effects, diode equivalent circuit, zener diode, LED, Half wave rectifier, full wave rectifier, clippers, clampers.

UNIT-2

Bipolar Junction Transistors (BJTs):- Introduction, transistor operation, Simplified structure and physical operation of n-p-n and p-n-p transistors in the active region, Common–Base configuration, Common–emitter configuration, Common–collector configuration Current-voltage characteristics of BJT, BJT as an amplifier and as a switch.

Field Effect Transistors (FETs):- Introduction, construction and characteristics of JFETs, transfer characteristics, D-MOSFET, E-MOSFET.

UNIT-3

Communication Systems: -Analog and digital signals, block diagram of basic communication system, need for modulation, methods of modulation, AM/FM transmitters & receivers (Block diagram description only)

Electronic Instruments:- Basic principle of Oscilloscope, Function of the sweep generator, Block diagrams of oscilloscope, Measurement of frequency and phase by Lissajous method, Application of oscilloscope for measurement of voltage, period and frequency, Block diagram of standard signal generator, AF sine and square wave generator, and Function generator.

UNIT-4

Digital Systems and Binary Numbers:-Digital systems, Binary numbers, number system conversion, octal &hexa decimal number, 1's& 2's compliments, signed binary numbers, binary codes, binary logic.

Logic Gates and Boolean Algebra:- The inverter, The AND, OR, NAND NOR, Exclusive-OR and Exclusive-NOR gate, Boolean operations and expressions, Laws and Rules of Boolean algebra, DeMorgan's theorem, Boolean analysis of

logic circuits, Standard forms of Boolean expressions, Boolean expression and truth table Combinational Logic and Their Functions: Basic combinational logic circuits, Implementation of combinational logic, The universal properties of NAND and NOR gates, Basic adders

Teaching Methods: Chalk& Board/ PPT/Video Lectures

Text Books:

- 1. Electronic Devices (Seventh Edition), Thomas L. Floyd, Pearson Education, 482 FIE, Patparganj, Delhi 110 092 (Selected Portions).
- 2. Digital Fundamentals (Eighth Edition), Thomas L. Floyd and R.P. Jain, Pearson Education, 482 FIE, Patparganj, Delhi 110 092.
- 3. Electronic Instrumentation, H.S. Kalsi, Tata McGraw-Hill Publishing Company Limited, New Delhi.

Reference Books:

- 1. Microelectronic Circuits (Fifth Edition), Adel S. Sedra and Kenneth C. Smith, Oxford University Press, YMCA Library Building Jai Singh Road, New Delhi 110 001.
- 2. Electronic Devices and Circuit Theory (Ninth Edition), Robert L. Boylestad and Louis Nashelsky, Pearson Education, 482 FIE, Patparganj, Delhi 110 092.
- 3. Electronics Principles (7th Edition), Albert Malvono and David J. Bates, Tata McGraw-Hill Publishing Company Limited, New Delhi.

SUBJ	ECT	CODE		r	TITL	E OF	THI	E SUI	BJEC	T	L	T	P	C	QP
DI	OCTC1	1042		F	BASI	CS O	F EL	ECT	RICA	L	3	0	0	3	A
DI	BSES1	1042				ENG	INEE	CRIN	G		3	U	U	3	A
					Pre -			•		thematics					
									Objec						
CEO1		t a basic kno stand the im								voltage, pot text.	wer, er	ergy a	and freq	uency to	0
CEO2	This c	course provi	des c	omprel	hensive	idea al	out D	C & AC	circuit	t analysis, m	agneti	c circu	iit analy	sis, wor	king
		ples of macl													
CEO3		Emphasize the effects of electric shock and precautionary measures. Improve the ability to function on multi-disciplinary teams.													
	ability	bility to function on multi-disciplinary teams. Course Outcomes: Upon successful completion of this course, students should be able to:													
CO1	TT. 1.									ourse, stuae	ents sn	ouia v	e abie i	:o:	
CO1		rstand the ba				_				1	<u> </u>		0		
CO2										nachines, A					
CO3		knowledge a ntive measu		the fu	ndamer	itals co	ncepts	of pow	er gene	ration, dome	estic wi	iring, e	electric	shock a	nd
CO4	Under	rstand Electi	rical	power	generat	ion an	d transi	missio	n proce	ss in India a	nd fun	ction o	n multi	-discipl	inary teams.
	•					CO	-PO &	PSO N		ıg				_	-
COs				P	ROGE	RAMM	E OUT	ГСОМ	ES					PSC	Os
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1		1	2												
CO2		2	2												
CO3		1	2												
CO4		2	2												
Avg.		1.5	2												

UNIT-1 (15 Hours)

DC Circuits:

Introduction to electrical terminology, Ohm's Law, Equivalent Resistance, series-parallel circuits, star-delta transformation, types of elements, ideal and practical voltage & current sources; Kirchhoff's Law, Mesh and Nodal Analysis.

Network theorems:

Superposition Theorem, Thevenin theorem, Maximum power transfer theorem excited by independent sources, Transients in RL&RC series circuits

RL & RC series circuits.

UNIT-2 (13

Hours)

Single phase & Three phase Ac circuits:

AC Fundamentals: RMS & Average value, form and peak factors, Complex algebra, concepts of reactance, impedance and their representation, AC through pure R, L, C, series RL, series RC, series RLC circuit, Concept of power & power factor; expression of power in complex notation.

Three-phase AC circuits:

Comparison between 1-ph & 3-ph AC circuit, Star & Delta connection, relation between line and phase quantities, Measurement of 3-phase power using 2-wattmeter method.

Magnetic circuits:

Magnetic flux, Magnetic flux density, Magnetic fields intensity, Relation between B & H, B-H curve, Analogy between Electric and Magnetic circuit, Leakage flux.

UNIT-3 (12 Hours)

DC Machines:

Introduction, working principle of DC Generator, Construction, Types, EMF equation, working principle of DC Motor Back e.m.f, Application of DC machines.

AC Machines:

Introduction, Principle of operation of AC machines, Transformers, Construction, EMF equation, Turn ratio, Ideal transformer on no load with phasor diagram, 3-phase Induction motor principle of operation, Rotating magnetic field, Types of rotors, Synchronous speed and slip, Introduction to 1-phase Induction motor, 1-phase motors types, applications of 3-phase and 1-phase motors, AC generator and motors, Principle of operation, types of rotors, Synchronous motor operating principle.

UNIT-4 (10 Hours)

Measuring Instruments:

Introduction, Classification of instruments, construction and working principles of PMMC and moving iron type Instruments. Introduction to Power System &Domestic Wiring:

General layout of electrical power system and functions of its elements, Generation of electricity (Hydro, Thermal and Nuclear power plant), standard transmission and distribution voltages, Service main, Meter board, Fuse, MCB, Earthing (pipe & plate earthing), House wiring, Electric shock & precautions.

Teaching Methods: Chalk& Board/ PPT

Text Books:

- 1. V. Del Toro, "Principles of Electrical Engineering" Prentice Hall International.
- 2. P.V. Prasad, S.Sivanagaraju, R.PrasadBasic Electrical and Electronics Engineering; CENGAGE Learning.
- 3. I.J. Nagarath, "Basic Electrical Engineering" Tata McGraw Hill
- 4. D.E. Fitzgerald & A. Grabel Higginbotham, "Basic Electrical Engineering Mc- Graw Hill.

Reference Books:

- 1. Edward Hughes, "Electrical Technology" Longman
- 2. T.K. Nagsarkar & M.S. Sukhija, "Basic Electrical Engineering" Oxford University Press.
- 3. H. Cotton, "Advanced Electrical Technology" Wheeler Publishing
- 4. W.H. Hayt & J.E. Kennely, "Engineering Circuit Analysis" Mc Graw Hill.
- 5. Theory and Problems of Basic Electrical Engineering by D.P.Kothari & I.J. Nagrath PHI.
- 6. Fundamentals of Electrical Engineering and Electronics by B. L. Theraja, S. Chand & Company Ltd, Reprint Edition 2013.

SUBJ	IECT (CODE		TI	TLE	OF T	THE S	SUBJ	ECT		L	\mathbf{T}	P	C	QP
BF	SES 2	050	D A	ATA	STR	UCTI	URES	S USI	NG 'C	C++'	3	0	0	3	A
			•			Pre	-Requ	isite:						•	
					Cour	se Edu	cation	al Obj	ectives						
CEO1	Underst	tand the ob	ject ori	ented o	concept	ts and 1	to deve	elop C-	++ progr	ams for p	erform	ning dif	fferent	operati	ons on
	arrays,	stack, Queu	e, linke	d list. A	Analyze	e the di	fference	e betwo	een them	and unde	rstand	differer	nt appli	cations.	
CEO2	Underst	tand differe	nt searc	hing an	d sorti	ng metl	nods an	d com	pare then	n in terms	of peri	forman	ce and a	applicat	ions.
	C	ourse Outc	omes: <i>U</i>	Jpon si	uccessf	ful com	pletion	of this	course,	students	should	be able	e to:		
CO1	Develo	p algorithms	for per	formin	ig diffe	rent op	eration	s on 1I	o array, r	natrix, sta	ck, Qu	eue, an	alyze th	ne differ	rence
		n them and													
CO2	Understand different searching and sorting methods, Linked lists and them compare them in terms of performance														
	and applications.														
CO3	and applications. Understand the Binary Tree and its memory representation; analyze Binary search Tree and its applications,														
	compar	e the BST v	ith AV	L Tree	and ex	amine	the adv	antage	s.						
CO4		Heap Tree,													/ze
		al methods a	nd appl	ication	s of gra	aph. An	alyze t	he Has	hing tecl	nniques in	compa	re with	other s	sorting	
	techniq	ues.													
						O-PO									
COs				PR	OGRA	MME	OUTO	COME						PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	2	3												
CO2	3	2													
CO3	3	3													
CO4	3	3	3												
Avg.	2.75	2.5	1.5												

SYLLABUS
Unit I [12 hours]

Basic concepts: Data abstraction, Algorithm specification, Memory Representation of 1D and 2D Array. Stack: Introduction to stack, basic operations and implementation of stack using arrays

Queue: Introduction to linear queue, basic operations and implementation of linear queue using arrays, circular queue, basic circular queue operations& Representation of Double ended Queue.

Applications on stack – Recursion, infix to postfix conversion, Evaluation of postfix

Unit II [12 hours]

Searching: Linear search and Binary search using linear array

Sorting: Bubble sort, Insertion sort, Selection sort, Quick sort, Bucket Sort using linear array.

Linked Lists: Basic operations of singly, doubly and circular linked lists, implementation of stack and queue using singly linked list.

Unit III [12 hours]

Trees: Introduction, Terminology, Binary Trees, Representation of Binary Trees using arrays and linked lists, Binary tree traversals, Creation of binary tree from in-order & pre-order sequences - Creation of binary tree from in-order & post-order Binary Search Trees: definition, basic operations of BST (Searching, Insertion and deletion)

Introduction to AVL trees, Height of an AVL Tree, Balancing AVL tree by rotations after insertions and deletions of a data node.

Unit IV [12 hours]

Heaps: Introduction to binary heaps, definition of a Max-heap, Min-heap, creating Max-Heap, Applications: Heap sort, Priority queue.

Graphs: Definitions, Graph representation - Adjacency matrix, Incidence Matrix, adjacency lists, Graph Traversals (BFS & DFS), Single source shortest path algorithm (Dijkstra's Algorithm) Topological Sorting.

Hashing: Hashing Functions, Open hashing (chaining), closed hashing (Open addressing – linear probing, quadratic probing, double hashing), rehashing.

Teaching Methods: Chalk& Board/ PPT/Video Lectures

Text Books:

- 1. Gilberg and Forouzan: "Data Structure- A Pseudo code approach with C" by Thomson Publication.
- 2. "Data structure in C" by Tanenbaum, PHI publication / Pearson publication.
- 3. Pai: "Data Structures & Algorithms; Concepts, Techniques & Algorithms "Tata McGraw Hill.

Reference Books:

- 1. "Fundamentals of data structure in C" Horowitz, Sahani & Freed, Computer Science Press.
- 2. "Fundamental of Data Structure" (Schaums Series) Tata-McGraw-Hill.

SUBJ	ECT (CODE		7	TITL	E OF T	THE S	SUBJ	ECT		\mathbf{L}	T	P	C	QP
BBS	SHS 2	060				ICATI					2	0	0	2	A
			•			Pı	e –Rec	quisite:					•	•	
						Course E			•						
CEO1		velop the co													
CEO2		nance the a	_				_			d entrepre	neurial s	kills			
CEO3		able studen													
CEO4		ke students													
CEO5	To inc	ulcate a se													
Course C	To inculcate a sense of professionalism in students utcomes: Upon successful completion of this course, students should be able to:														
CO1	Under	stand the n	ature	e and so	ope of	corporate	e comn	nunicati	on and	try to be i	ndustry 1	ready			
CO2		o use langı													
CO3	Disting	guish fact t	from	opinio	n in rea	ding pass	sages fr	om dif	ferent to	ext books					
CO4	Create	profession	nal de	ocumer	ıts like	Resume,	Job A	pplicati	ion lette	r for their	career 1	needs			
						CO-PC) & PS	О Мар	ping						
COs					PROG	RAMM	E OUT	COM	ES					PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1								2	2	3					
CO2										3	2				
CO3						1				3					
CO4										3	1				
Avg.						0.25		0.5	0.5	3	0.75				

UNIT-1 Introduction to Technical Communication

[7 hours]

- 1.1 Essence of Technical Communication 1
- 1.2 Nature and Scope of Technical Communication: 1 +1 +1

Technical Communication -- Interactive and Adaptable; Technical Communication -- Reader Centered; Technical Communication and teamwork; Technical Communication Has Ethical, Legal, and Political Dimensions; Technical Communication - its International and Cross-Cultural nature; Technical communication and use of ICT.

- 1.3 Need of Technical communication for career development 1
- 1.4 Computer Assisted Language Learning (CALL) Self learning through use of technology, Effectiveness of CALL for developing English Language Skills; Use of Internet 1+1

UNIT - 2 Career Communication

[17 hours]

- 2.1. Career making: Setting Goals, SWOT analysis 1
- 2.3 Preparing a Résumé: Elements of a Résumé; Types of Résumés: Chronological Résumé, Functional Résumé; Use of job portals 1+1+1
- 2.4 Effective Job Application Letter/Cover letter 1 +1
- 2.5 Group Discussion 1+1
- 2.6 Job Interview 1 +1 +1+1 +1
- 2.7 Effective Oral Presentation 1+1
- 2.7 Handling a Meeting 1+1

UNIT-3 Technical Approach to Reading

[8 Hours]

- 3.1 Know your Reading speed; Advantages of speed reading 1
- 3.2 SQ4R Techniques of Reading 1+1
- 3.3. Techniques of Rapid reading: skimming, scanning 1+1
- 3.4 Understanding coherence and cohesion 1
- 3.5 Note taking, Mind maps 1+1

UNIT-4 Technical Writing

[14 hours]

- 4.1 Writing a technical paper 1+1
- 4.2 Writing business letters significance, purpose, structure and elements, layout; types of business letters 1+1+1+1
- 4.3 Memos 1+1
- 4.4 Business Reports and Technical proposals 1+1+1+1

4.5 Using the Social media for better communication 1+1

Teaching Methods: Chalk& Board/ PPT/Video Lectures

Text Books:

- 1. Business Communication Today by Bovee, Courtland L., Thill, John V. Prentice Hall.
- 2. Technical Communication Today by Richard Johnson-Sheehan. Edition 5. Pearson.
- 3. Communicative English for Engineers and Professionals by Nitin Bhatnagar and Mamta Bhatnagar. Published by DK/Pearson.

Reference Books

- 1. Basic Communication Skills for Technology by Andre J. Rutherford, Pearson Education Asia, Patparganj, New Delhi.
- 2. Business Communication by Varinder Kumar and Bodh Raj. Kalyani Publishers.
- 3. A Textbook of English Phonetics for Indian Students by T. Balasubramanian
- 4. Technical Communication, Principle and Practice by Meenakshi Raman & Sangeeta Sharma, Oxford University Press.
- 5. How to Read better and Faster by Norman Lewis. 4th Edition. Publisher: Crowell.

LA	B COD	E			NAM	IE OF	THE I	LAB			L	T	P	C	QP	
BB	SBS112	1		E	. – .		NG PH ATOR		ES		0	0	2	1		
			l.				-Requis						1		<u> </u>	
					Cor		ıcational		ives							
CEO1	Students	s will u	ndersta	nd the b			physics			matical	l descript	ion.				
CEO2	Students	s will b	e able t	o use th	e laws of	f physics	and calcu	ılus to s	solve pr	oblems						
CEO3	Students	s will b	e able t	o work	together	in collab	orative g	roups to	perfor	m expe	riments,	gather (data an	d reach	ı	
	conclusi	ons.														
Course (Outcomes :	omes: Upon successful completion of this course, students should be able to:														
CO1	Underst	nderstand the uses of various Basic Instruments for different Physical measurements. The polythe Physical Laws and verify those using standard Experiments.														
CO2	Apply tl	ne Phys	sical La	ws and	verify th	ose using	g standard	l Experi	ments.							
CO3	Organiz Physical			to deter	rmine dif	ferent Ph	ıysical qu	antities	and an	lyze tho	ose for di	fferent	applica	ation to	1	
CO4	Evaluate with the		_			uantities	systemati	ically th	rough e	experim	ents and	design	new e	xperim	ents	
						CO-PO	& PSO N	Iappin	g							
COs					PROGE	RAMME	OUTCO	OMES						PSOs	,	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1		2	
CO1	3	3	2		2					1	2					
CO2	3	3	3		3	3	1			2						
CO3		3	2	3	3					2						
CO4	3	3	3	3	3				2	3	3					
Avg.	2.25	3	2.5	1.5	2.75	0.75	0.25		0.5	2	1.25				· · · · · · · · · · · · · · · · · · ·	

List of Experiments:

- **1.** Study of frequency of an electric tuning fork by meld's experiment.
- 2. Study of the acceleration due to gravity by using Bar/Kater's pendulum.
- **3.** Study of the law of transverse vibration by using sonometer.
- **4.** Study of wavelength of light by Newton's Rings apparatus.
- **5.** Study of wavelength of light by Fresenel's bi-prism/Michelson inter ferometer.
- **6.** Study of grating element of a plane diffraction grating.
- 7. Study of double slit interface due to He-Ne laser.
- **8.** Study of monochromaticity and divergence of the given laser beam
- **9.** Study of reflection and total internal reflection by optical fibers
- **10.** Study of Hall-coefficient of a semiconductor
- 11. Study of dielectric constant of given solid by Leacher wire method.
- **12.** Study of the resistivity of a semiconductor with temperature by four- probe method.
- **13.** Study of band gap energy of PN junction (Ge/Si) diode.
- **14.** Study of plank's constant using photo-voltaic cell.
- **15.** Study of B-H curve of ferromagnetic substance.
- **16.** Study of magnetic susceptibility of sollds.

LAB	CO	DE			NA	ME	AB		L	T	P	С	QP		
BBS	BS11	22		EN			ING C ORAT		ISTRY	Y	0	0	2	1	
							Pre -	Requisit	te:		I.	ı	ı		l
						Cour	se Educ	ational	Objectiv	es					
CEO1	To tı	ain the	studen	ts abou	t the a	pplicat	tions of c	hemical	sciences	s in the fie	ld of eng	gineerin	g and t	echnol	ogy
Course (Outcor	nes: <i>Up</i>													
CO1	Unde	erstand t	the bas												
CO2	Stan	dardize													
CO3	Estir	nate the	hardn	ess, ion	s in sa	lts and	l compos	sitions ir	ores.						
CO4	Synt	hesizes	the dru	ıgs and	know	about	their app	olication	S						
						C	0-PO &	PSO M	apping						
CO					PR(OGRA	MME C	OUTCO:	MES					PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1		2		2			2		2		3				
CO2							3		3		2				
CO3		2		2			2		2		2				
CO4		2		2			2		2		2				
Avg.		1.5		1.5			2.25		2.25		2.25				

List of Experiments:

- 1. Determination of total hardness of water by using EDTA.
- 2. Determination of amount of NaOH and Na₂CO₃ present in mixture of two.
- 3. Standardization of KMnO₄ using sodium oxalate.
- 4. Determination of ferrous ion in Mohr's salt by standardized KMnO₄.
- 5. Determination of % of dissolved oxygen in given water sample.
- 6. Estimation of available chlorine in bleaching powder solution.
- 7. Determination of rate constant of acid catalyst Hydrolysis reaction.
- 8. Preparation of aspirin
- 9. Estimation of calcium in limestone.
- 10. Estimation of Zinc in brass.
- 11. To determine the strength of HCl and acetic acid from the mixture of acid by strong alkali (NaOH) by Conductrometry
- 12. Preparation of nanoparticle.
- 13. Determination of partition coefficient of iodine in benzene and water.
- 14. Preparation and determination of pH of buffer solution.
- 15. To determine the molecular weight of polymer by viscosity measurement.

LAB	COI	ЭE			NA	ME (OF T	THE L	AB		L	T	P	C	QP
RRS	ES11	<u>4</u> 1		BA	SIC	S OF	ELI	ECTR	ONIC	CS	0	0	2	1	
DD S	LOII	71			I	LAB(DRA	TORY	Y		U	U		_	
								-Requ							
								ucation							
CEO1	_	rovide onents.	students	engii	neering	g skill	s by	way of	breadb	oard circuit	design	with 6	electroni	ic devi	ces and
	To de	sign ar	nd analyz	ze vari	ous El	lectron	ic circ	uits suc	h as mu	ıltivibrators,	applicati	ons of	operation	onal am	plifiers,
CEO2	RC co	oupled a	amplifier	s, osci	llators	, digita	al circu	iits etc.	so that	students are a	able to u	ndersta	nd the p	ractical	aspects
	of bas	sic elect	tronics th	eory.											_
CEO3	To en	enable the students to simulate and test the Analog, Digital and mixed Electronics circuits.													
		comes: Upon successful completion of this course, students should be able to:													
CO1										frequency &		le using	function	n gener	ator.
	Demo	nstrate	introduc	ctory 1	cnowle	edge o	f softv	vare for	schem	atic capture,	circuit	simulat	ion, an	d circui	t board
CO2	layou			,		Ü				1 ,					
CO3	_			ristics	of di	fferent	electr	onic de	vices a	nd circuits s	uch as	diodes,	transist	ors, re	ctifiers,
	_	fiers et													
CO4	Plan r	new ele	ctronic s	ystems	and to		* 1								
	1							& PSO		ıg			1		
COs							ME (OUTCO			1			PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	1	2
CO1		1	1											-	
CO2		2	2												
CO3 CO4		2	2						1					1	
									1					1	
Avg.		1.5	1.25												

List of Experiments:

EXPERIMENTS: 1 Familiarization of electronic components and devices (Testing of semiconductor diodes and transistors using digital multi meter)

EXPERIMENTS: 2 Study and use of Oscilloscope, signal generator to view waveforms and measure amplitude and frequency of a given waveform.

EXPERIMENTS: 3 V-I characteristics of semiconductor diode

EXPERIMENTS: 4 Studies on half-wave and full-wave rectifier circuits without and with capacitor filter; recording of the waveforms and measurement of average and rms values of the rectifier output.

EXPERIMENTS: 5 Studies on clipper circuit.

EXPERIMENTS: 6 Studies on clamper circuit.

EXPERIMENTS: 7 V-I characteristic of an n-p-n or p-n-p transistor, DC biasing the transistor in common-emitter configuration and determination of its operating point (i.e., various voltages and currents).

EXPERIMENTS: 8 MOSFET I-V characteristics

EXPERIMENTS: 9 Studies on Logic gates (Truth table verification of various gates).

EXPERIMENTS: 10 Studies and experiments using ADDER CIRCUITS ICs

LAB	CO	DE			NA	ME	OF 7	THE I	LAB		L	T	P	C	QP
BBS	ES11	142		ENG				CTRI LABO	_	ORY	0	0	2	1	
							P	re –Rec	uisite:						
						Coı	ırse E	ducatio	nal Ob	jectives					
CEO1	To k	now the	basic	conce	pts on	differe	ent typ	es of cir	cuits.						
Course	Outcor	comes: Upon successful completion of this course, students should be able to:													
CO1	Illust	lustrate the transformers and single phase motors constructional features													
CO2	Anal	Analyse various electrical quantities with combination of loads													
CO3	Exan	nine the	chara	cteristi	ics of A	AC and	d DC 1	nachine	S						
CO4	Disti	nguish t	the me	thods	of spec	ed con	trol of	DC mo	tors						
							CO-P	O & PS	O Map	ping					
COs					PRO	GRA	MME	OUTC	OMES					PSO	S
COS	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1															
CO2		2	2							_					
CO3		1	2												
CO4		2	2												
Avg.	1.5 2														

List of Experiments:

- 1. Study of different electrical equipment's (transformer, single phase motors)
- 2. Power factor improvement using capacitor for fluorescent lamp.
- 3. Verification of Superposition and Thevenin's theorem
- 4. Measurement of reactive power by using single watt-meter method
- 5. 3phase Power measurement by using two wattmeter methods.
- 6. Calculation of current, voltage and power in series R-L-C circuit excited by single-phase AC supply and calculation of power factor.
- 7. Determination of open circuit characteristics (OCC) of DC shunt generator
- 8. Starting and speed control of a dc shunt motor by (a) field flux control method, and (b) armature voltage control method.
- 9. V-I characteristics of incandescent lamps and time-fusing current characteristics of a fuse.
- 10. Connection and testing of a single-phase energy meter.

SUBJ	ECT (CODE			C	OUR	SE T	TLE	1		L	T	P	С	QP
BB	SES2	150	Ι)ATA	STR		URES RAT		NG'	C++'	0	0	2	1	
					L		e -Req								
					Con		lucation		iective	S					
CEO1		p algorithn			rming di	fferent	operati	ons on	arrays,		eue, lin	ked list	t. Analy	ze the	
CEO2	Unders	tand diffe	rent	search	ing and	sortin	g met	hods a	nd cor						e and
CEO3		Understand the memory representation of graph, its traversal methods and applications. Analyze the Hashing techniques in compare with other sorting techniques.													
Course C	Outcomes: Upon successful completion of this course, students should be able to:														
CO1	Unders	tand and ir	nplei	nent th	e object	oriente	ed conce	epts by	in deve	eloping th	e progra	ams for	differe	nt opera	ations.
CO2		p programs								y, matrix,	stack, Ç	ueue, a	analyze	the	
	differe	nce betwee	n the	m and	understa	nd thei	r applic	cations.							
CO3	Design	code for d	iffere	ent sear	ching an	d sorti	ng metl	nods an	d analy	ze their p	erforma	ance.			
CO4	Develo	p the codes	s for	differe	nt operat	ions or	Linke	d lists a	ınd con	npare with	other o	lata str	uctures.		
						CO-PC) & PS(Э Марј	oing						
COs				P	ROGRA	AMME	E OUT	COME	S					PSOs	
COs	1 2 3 4 5 6 7 8 9 10 11 12												1	2	
CO1	2	2	3	1	1										
CO2	2	3	3	3	2										
CO3	3	3	3	3	2										
CO4	2	2	3	3											-
Avg.	2.25	2.5	3	2.5	1.25										

Lab1: introduction to OOPs (C++ features), cin, cout, object, class, Simple programs.

Lab2: Access Specifiers, inline, private, public, arrays of objects, programs on them. Lab3: Experiment No.1

1) Write a C++ program to create a class called student to store your rollno, name, age. Create an array of object to input 5 students data and then display where age>=20.

Write a C++ program to create a class having methods for operations insertion, deletion and display to perform operations on 1D array of elements.

Lab4: Experiment No.2

Write a C++ program to create a class having methods: insertion, multiply and display for performing multiplication on a matrix of elements.

Lab5: Experiment No.3

Write a program using C++ to create a stack using class and perform:

(i) push operation (ii) pop operation (iii) display operation

Lab6: Experiment No.4

Write a C++ program that uses Stack operations to converting an infix expression into equivalent postfix expression.

Lab7: Experiment No.5

Write a C++ program to create a linear queue and perform the following operations: (i) insertion ii) deletion and iii)

Traversal

Lab8: Experiment No.6

Write C++ programs that use both recursive and non-recursive functions to perform the linear & binary search operation for a Key value in a given list of integers.

Lab9: Experiment No.7

Write a C++ menu driven program to implement bubble sort, selection sort and insertion sort for a given list of integers in increasing order

Lab10: Experiment No.8

Write a C++ program to implement quick sort to a given list of integers to sort in ascending order.

Lab11: Experiment No.9

Write a C++ program that uses functions to perform the following operations on linear linked list: i) Creation ii) Insertion

iii) Deletion iv) Traversal

Lab12: Experiment No.10

Write a C++ program that uses functions to perform the following operations on Double linked list: i) Creation ii)

Insertion iii) Deletion iv) Traversal.

SUBJE	CT (CODE			N	AMI	E OF	THI	E SUE	BJECT		L	Т	P	C	Q P
BBS	HS 2	2160				INIC	CAL (COM		GLISH A NICATI Y		0	0	2	1	
			ı		(Course	Educ	ationa	l Objec	tives		I			ı	
CEO1		enable stud														
CEO2		make stude								practice.						
CEO3	To	inculcate a	sense													
	_									ill be able i						
CO1		pare profes ds (e.g., M						needs (e.g. Job	applicatio	n letter	, résumé)	and p	rofes	sional	Ĺ
CO2	Effe	ectively pa	rticipa	ate ir	າ GD ຄ	and PI.										
CO3																
CO4	1 1 0 0															
	_								Mappin							
COs		,				ROGE	RAMM		TCOM						PSOs	ļ
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1										2						
CO2										2						
CO3										2						
CO4	-									2						
Avg.								<u> </u>		2						
							SYL		BUS							
1. Writin				•										[4	hour	s]
2. Writin	g a wi	nning resu	ıme an	id po	osting	in job	portals							[4	hour	s]
3. Group	Discu	ssion												[8	hours	;]
4. Job Int	terviev	V													hours	-
5. Oral p	resent	ation												[6	hours	;]
6. Organi	6. Organizing a Meeting [4 hours]															
	7. Note making and Note taking [4 hours]															
8. Memo	8. Memo writing [2 hours]															
9. Profili	9. Profiling a company [4 hours]															
10.Summ			search	pap	er/nev	vs repo	ort									
Teaching N																
Toyt Dook																

Text Books:

- 1. Form and Finesse, Business Communication and Soft skills by Shruti Das, Published by Orient Black Swan.
- 2. Business Communication Today by Bovee, Courtland L., Thill, John V. Prentice Hall.
- 3. Technical Communication Today by Richard Johnson-Sheehan. Edition 5. Pearson.
- 4. Communicative English for Engineers and Professionals by Nitin Bhatnagar and Mamta Bhatnagar. Published by DK/Pearson.

Reference Books:

- 1. Basic Communication Skills for Technology by Andre J. Rutherford, Pearson Education Asia, Patparganj, New Delhi
- 2. Business Communication by Varinder Kumar and Bodh Raj. Kalyani Publishers.
- 3. A Textbook of English Phonetics for Indian Students by T. Balasubramanian
- 4. How to Read better and Faster by Norman Lewis. 4th Edition. Publisher: Crowell.

SUBJ	ECT	CODE		7	TITL	E Ol	F TH	E SU	BJEC'	T	L	T	P	C	QP
BB	SES	1171		\mathbf{E}	NGI	NEE	RIN	G DR	AWIN	\mathbf{G}	0	0	2	1	
							Pre -	-Requis	site:						
					(Cours	e Educ	cational	l Objecti	ives					
CEO1		able students							ng skills	as a means	of accur	ately a	nd clear	ly	
CLOI		nunicating ide													
CEO2		able students		cquire	requis	ite kno	wledge	e, techn	iques an	d attitude re	quired f	or adva	inced st	udy of	
		eering drawir	_	0.1						***					
		utcomes: Upon successful completion of this course, students should be able to: Demonstrate the views of different solid object													
CO1	Demonstrate the views of different solid object. Construct projection of plane surface and solids.														
CO2	Const	truct projection	n of	plane	surfac	e and s	olids.								
CO3	Deve	lop Sections of	of va	rious S	solids s	surface	.								
CO4	Identi	ify the project	ion	in ison	netric s	scale.									
						CO	-PO &	PSO I	Mapping	,					
COs				I	PROG	RAM	ME O	UTCO	MES					PSOs	3
COS	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1	2			2											
CO2	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														
CO3	2			3											
CO4	1			2											
Avg.	1.5			2.5											

Unit 1

- 1. Introduction: Introduction to Standards for Engineering Drawing practice, Line work and Dimensioning. [1 Sheets]
- 2. Co ordinate system and reference planes: Definitions of HP, VP, RPP & LPP. Selection of drawing size and scale. Representation of point and line. [1 Sheets]

Unit 2

- 3. Orthographic Projections: Introduction, Definitions Planes of projection, reference line, Projections of points in all the four quadrants, Projections of straight lines (located in First quadrant/first angle only), True and apparent lengths, True and apparent inclinations to reference planes. [1 Sheets]
- 4. Orthographic Projections of Plane Surfaces (First Angle Projection Only): Introduction, Definitions–projections of plane surfaces–triangle, square, rectangle, hexagon and circle. [1
- Projections of Solids (First Angle Projection Only): Introduction, Definitions Projections of right regular tetrahedron, hexahedron (cube), prisms, cylinders and cones in different positions.
 sheet

Unit 3

6. Sections and Development of Lateral Surfaces of Solids: Introduction, Section planes, Sections, Section views, Sectional views, Apparent shapes and True shapes of Sections of right regular prisms, pyramids, cylinders and cones resting with base on HP [2 – Sheets]

Unit 4

7. Isometric Projection (Using Isometric Scale Only): Introduction, Isometric scale, Isometric projection of tetrahedron, cones and spheres. [1 – Sheets]

Teaching Methods: Chalk& Board

TEXT BOOKS

- 1. Engineering Drawing N.D. Bhatt & V.M. Panchal, Charotar Publishing House, Gujarat.
- 2. Computer Aided Engineering Drawing S. Trymbaka Murthy, I.K. International Publishing House Pvt. Ltd., New Delhi
 - 2. 3. Engineering Drawing by N. S. Parthasarathy and Vela Murali Oxford University Press.

SUBJ	ECT C	CODE		T	ITLI	E OF	TH	E SU	BJEC	T	L	T	P	C	QP
BB	SES11	72		EN	GIN	EER	ING	WOI	RKSH	ЮP	0	0	2	1	
							Pre	Requi	site:						
									l Obje						
CEO1										tting, Carpo					which
										sing wood					
CEO2								~ .		nd to study	the va	rious	tools a	nd equ	ipment
		nands on													
						_				udents shou	ıld be a	ble to:	•		
CO1	Explain various safety precaution and use of various hand tools Demonstrate the process configuration and basic mechanism of different machines like Lathe. Shaper														
CO2	Demonstrate the process configuration and basic mechanism of different machines like Lathe, Shaper														
	and Milling machine.														
CO3		•			e tool	ls for	mach	ining	process	ses includin	g turni	ng, th	read cı	ıtting,	facing,
		ng and di													
CO4	Praction	ce on ma	nufa	cturing	of co					p trades incl	luding f	itting	and we	lding	
									Mappi	ng					
COs				PF	ROGI	RAM	ME O	UTC(DMES					PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1	1			1											
CO2	2			2											
CO3	1			3											
CO4	1 3														
Avg.	1.25			2.25											

Unit 1

- 1. Safety Precaution: To study the various Safety precautions in workshop.
- 2. Fitting:
- (i) Study of different hand tools and Machine tools used in fitting.
- (ii) Preparation of a male and female fitting job by using different hand tools.

Unit 2

- 3. Machining:
- (iii) Study of various components and working principle of lathe machine
- (iv) Preparation of a cylindrical job by lathe (turning, Thread cutting, knurling)
- (v) Study on Shaper and Milling Machine

Unit 3

- 4. Welding Practice:
- (vi) Hand on practice on Electric Arc Welding to prepare Lap Joint, Butt Joint, T Joint and Corner Joint .
- (vii) Study of Oxyacetylene Gas welding and Gas cutting.

Teaching Methods: Chalk & Board, Hands on practice.

Reference Books:

- 1. Elements of Workshop Technology, Vol. I and II by Hajra choudhary, Khanna Publishers
- 2. Workshop Technology by WAJ Chapman, Viva Books
- 3. Workshop Manual by Kannaiah / Narayana, Scitech Publicaitons(P) Ltd.

III SEMESTER [SECOND YEAR]

Sl. No.	Course Category	Course Code	Course Title	L	Т	P	Credits
			THEORY				
1	PC	BCHPC3010	Fluid Mechanics	3	0	0	3
2	PC	BCHPC3020	Mechanical Operations	3	0	0	3
3	PC	BCHPC3030	Chemical Engineering Thermodynamics	3	0	0	3
4	BS	BBSBS3040	Engineering Mathematics-III	3	1	0	4
5	ES	BCSES3050	Object Oriented Programming through JAVA	3	0	0	3
6	BS / HS	BBSBS3061	Environmental Engineering and Safety	3	0	0	3
0	B3 / H3	BMSHS3062	Engineering Economics and Costing	3	U	U	3
		PR	ACTICAL / SESSIONAL				
7	PC	BCHPC3110	Fluid Dynamics LAB	0	0	2	1
8	PC	BCHPC3120	Mechanical Operations Lab	0	0	2	1
9	PC	BCHPC3130	Thermo physical Lab	0	0	2	1
10	ES	BCSES3151	JAVA Programming Laboratory	0	0	2	1
		TOT	AL	18	1	8	23

Subject code	Course Title	L	T	P	C	QP
BCHPC3010	Fluid Mechanics	3	0	0	3	

Pre-Requisites (If any)-Mathematics, Mechanics

CEO1:To impart to the student knowledge on fluid properties, fluid statics, dynamic characteristics through pipes and porous medium, flow measurement and fluid machineries

CEO2: To introduce the mechanics of fluids (fluid statics and fluid dynamics), relevant to Chemical Engineering operations.

Course Outcome

CO1	Rephrase the basic principles of fluid mechanics
CO2	Analyze fluid flow problems with the application of the momentum and energy equations
CO3	Explain the pipe flows, mixing processes & fluid machinery
CO4	Compare and distinguish fluid particle systems and equipment and conveying system

COs					PRO	GRAI	MME	OUTC	OMES				PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	2	-	-	-	-	-	-	-	-	-	-	3		
CO2	2	3	-	-	-	-	-	-	-	-	-	-	2		
CO3	2	3	-	-	-	-	-	-	-	-	-	-	1		
CO4	3	2	-	-	-	-	-	-	-	-	-	-	2		

Unit: 1 15 (Hours)

Classification of fluid, Fluid statics – basic equation, equilibrium of fluid element – Hydrostatic Pressure, Pressure measuring Devices. Flow in boundary layers. Its formation & growth in tubes & plates. Fluid flow continuity, momentum & Bernoulli's equation. Flow measuring devices; Venturi, Orifice, Pitot tube & Rotameter

Unit: 2 10 (Hours)

Flow of incompressible fluid in pipes, Relation between skin friction & wall shear. Laminar flow in pipes, Hagen-Poiuilles equation, Friction factor, Friction from changes in velocity or direction, Flow of compressible fluids: Basic equations.

Unit: 3 10 (Hours)

Flow past immersed bodies, Drag Co-efficient. Motion of particles through fluids. Its mechanics, terminal Velocity. Dimensional analysis, Mechanism of fluidization, Application of fluidization.

Unit: 4 10 (Hours)

Transportation of fluids, Types, characteristics and sizing of valves; Classification, performance characteristics and sizing of pumps, compressors and fans. Concept of slip, piping & fittings.

Teaching Method (s): Chalk & Board/PPT/Video Lectures

Text Books 1: Unit operations of Chemical Engg. by Mc Cabe & Smith

2: Fluid Mechanics for Chemical Engg. by Noel Drevers

Ref. Books 1: A Text book of Fluid Mechanics & Hydralic Machines by R.K.Bansal

2: Transport processes and unit operations by Christie J. Geankopolis, PHI

Subject code	Course Title	L	T	P	C	QP
BCHPC3020	Mechanical Operation	3	1	0	4	

Pre-Requisites (If any)-Fluid Dynamics, Mathematics

CEO1:TO learn about the characterization of solids, size reduction, techniques of solid - fluid separation and mixing

CEO2: To introduce students to the numerous industrial operations dealing with the particulate solids, their handling in various unit operations and those in which particle fluid interactions are important.

	Course Outcome
CO1	Understand and apply the basic methods of characterization of particles and bulk solids.
CO2	Analyze and evaluate the technology of mechanical processing of solid material in order to achieve defined characteristics.
CO3	Describe the operation, as well as constriction and exploitation characteristics of machines for mechanical operations.
CO4	Illustrate the usage of wide specter and sources of information as well as individual and team work.

COs					PRO	GRA	MME	OUTC	OMES				PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	2		-	-	-	-	-	-	-	-	-			
CO2	3	2		-	-	-	-	-	-	-	-	-			
CO3	3	2		-	-	-	-	-	1	-	-	-			
CO4	3	2	ı	-	-	-	-	-		ı	-	-			

Unit:1 10 (Hours)

Particle size, shape, Specific surface area, etc. Storage and Transportation of solids Size Reduction: Laws of grinding, Jaw, roll and gyratory crushers, revolving mills, Ball mill, attrition mill, fluid energy mill, open Circuit & closed Circuit grinding,

Unit:2 10 (Hours)

Size Separation, screening, screening equipments, Trammels, Capacity & effectiveness of screens, Magnetic and Electrostatic Separators.

Unit:3 10 (Hours)

Motion of particles through fluid, drag Coefficient, Free and hindered setting, Thickeners, Cyclones, Classifications: Sink & float method, Jigging, Tabling, Forth flotation

Unit:4 10 (Hours)

Fillration, Theory, plats & frame filter Press, Leaf filter, Rotary filter, Mixing & Agitation, Power consumption of Mixer, Liquid Mixing, Solid Mixing, Mixing equipment.

Teaching Mentod (s): Chalk & Board/PPT/Video Lectures

Text Books 1: Mc Cabe & Smith , Unit operations of Chemical engineering, Mc Graw lim

2: Coulson & Richabol Vol-2 Chemical Engineering pergammmic Press.

Ref. Books 1: Mechanical Operation for chemical engineers, Narayan and Bhattacharjee

2:Mechanical Operation by Swain. Publisher, Tata McGraw-Hill Education, 2011.

Subject code	Course Title	L	T	P	C	QP
ВСНРС3030	CHEMICAL ENGINEERING THERMODYNAMICS	3	0	0	3	

Pre-Requisites (If any)-

CEO1:To apply the fundamentals of chemical engineering thermodynamics and to apply the application of thermodynamics to various processes.

1	Course Outcome
CO1	Apply fundamental concepts of thermodynamics to engineering applications Determine thermodynamic efficiency of various energy related processes
CO2	Estimate thermodynamic properties of substances in gas and liquid states
CO3	Explain the vapor-liquid equilibrium for a system
CO4	Explain the chemical reaction equilibrium for a system

COs					PRO)GRA	MME	OUTCO	OMES				P	PSOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	0	0	-	-	-	-	-	-	-	-	3	
CO2	3	3	0	0	-	-	-	-	-	-	-	-	2	
CO3	2	2	2	1	-	-	-	-	-	-	-	-	1	
CO4	1	0	0	0	-	-	-	-	-	-	-	-	2	

Unit:1 10 (Hours)

The first law of Thermodynamics, the thermodynamic state and state function, Constant volume & constant pressure process, Properties of pure fluids; PVT behavior of pure substances, Virial equations of state, The ideal gas, Applications of Virial equations, Cubic equation of state, Theorem of corresponding states. Second Law: Entropy, work function, Introduction to third law.

Unit:2 10 (Hours)

Phase Equilibria: Criteria of phase equilibrium. Vapor/Liquid Equilibrium: The nature of equilibrium, the phase rule, VLE qualitative behavior, Raoult's law; Dew point and Bubble point calculations using Raoult's law and Modified Result's law. Henry's law, VLE from K-value correlation, flash calculations.

Unit:3 10 (Hours)

Solution Thermodynamics: Theory- Property relations for homogeneous phases. Fundamental property relation, The chemical potential and phase equilibria, Thermodynamics of Mixtures: Partial Molar Properties, The Gibbs—Duhem Equation, Partial properties in binary solution, The ideal gas mixture model, Fugacity and fugacity coefficient: Pure species, Species in solution, The ideal solution model, The Lewis/Randal rule, Excess properties; The Excess Gibbs energy and Activity coefficient, Excess property relation, The nature of excess properties

Unit-4

Chemical Reaction Equilibria: The reaction coordinate, application of equilibrium criterion to chemical reactions, the standard Gibb's energy change and the equilibrium constant, feasibility of a reaction, Effect of temperature on equilibrium constant, Evaluation of equilibrium constant, Relation of equilibrium constant to composition, Equilibrium conversion for single reaction; single phase reactions, reactions in heterogeneous systems, and multiple reactions, Phase rule and Duhem's theorem for reacting systems, Multireaction equilibria, Fuel Cells.

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures

Text Books:

- 1.Introduction to Chemical Engg. Thermodynamics by Smith and H.C. Vannes and M. Abbot (7th editation) Tata McGraw Hill, 2009
- 2:S.Sandler, "Chemical, Biochemical and Engineering Thermodynamics", 4th edition, Wiley, India.

Ref. Books

- 1. Chemical Engg. Thermodynamics by Y.V.C. Rao University Press
- 2. Chemical Engg. Thermodynamics by K.V.Narayan, PHI, 2000
- 3. Engineering and Chemical Thermodynamics by Milo D. Koretsky- 2nd Edition, Wiley publication

Subject code	Course Title	L	T	P	C	QP									
BBSBS3040	ENGINEERING MATHEMATICS-III	3	1	0	4										
	Pre-Requisites (If any) –	•		•											
	CEO1: To test the nature of complex function														
CEO2: To identify	O2: To identify the different methods for complex integration														
CEO3: To analyze 6	D2: To identify the different methods for complex integration D3: To analyze error by using different methods.														
CEO4: To know abo	ut different types of probability distributions.														
	Course Outcomes														
CO1	To know Analytic function and their properties.														
CO2	To Evaluate Real Integrals by using residue integration method.														
CO3	To apply numerical methods in Engineering Mathematical Problems														
CO4	To investigate Probability distribution problems and least square met the correlation coefficient and regression lines for the data.	hod to f	it a cu	ırve aı	nd to e	valuate									

Mapping of cour	se outc	omes wit	h progra	mme out	comes							
COURSE OUT COMES	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2		_	_	_	_	_	_	_	_	_
CO2	1	3	_	_	_	_	_	_	-	_	_	_
CO3	1	3	_	_	_	_	_	_	_	_	-	_
CO4	2	3		_	_	_	_	_	_	_	-	_

UNIT I (12 Hours)

Complex Analysis: Analytic function, Cauchy-Riemann equations, Harmonic Function, Complex integration: Line integral, Cauchy's integral theorem, Cauchy's integral formula.

UNIT II (8 Hours)

Taylor's series, Laurent's series, Singularities and zeros, Residues, Cauchy Residue theorem, Evaluation of real integrals.

UNIT-III (10 Hours)

Numerical methods: Errors, Solving of algebraic and transcendental equations by using fixed point iteration and Newton-Raphson's method. : Newton divided differnterpolation, Lagrange interpolation, Newton's forward and backward interpolation. Numerical Differentiation, Numerical integration: The trapezoidal rule, The simpson's rules, Ordinary differential equation: Modified Euler's method, Runge-kutta methods.

UNIT-1V (18 Hours)

PROBABILITY: Random variables, Probability distributions, Mean and variance of distribution,

Binomial, Poisson and uniform distributions, Normal distribution, Random sampling, Estimation of Parameters (maximum likely hood method), Confidence intervals, Testing of hypothesis, Acceptance sampling, Regression and correlation analysis, fitting of straight line by least square method.

Teaching Method(s): Chalk & Board/ PPT/Video Lectures/ MOOC/ Internship/Industry Guest Lecture/ Invited Guest lecture/ Demonstration. etc.

Text Books

E. Kreyszig," Advanced Engineering Mathematics:, Eighth Edition, Wiley India

Numerical method for Engineers by M. K. Jain and Iyenger.

Reference Books

Higher Engineering Mathematics by B S Grewal: Khanna Publishers, New Delhi.

Numerical Analysis by Dutta and Jena

Subject Code				Cou	rse Title				L	T	P	C	QP		
BCSES3051		OB	SJECT O		ED PRO	GRA	MMI	NG	3	0		3			
					Pre -Req	uisite:			1	1	1		I		
				Cours	se Educatio	nal Ob	jective								
CEO1			el of object ohism	oriented pr	ogramming	g: abstra	ct data t	ypes, enca	psulation	n, inherit	ance an	d			
CEO2			ental feature of object co		ect oriented	langua	ge like J	ava: objec	t classes	and inte	rfaces, e	exceptio	ns and		
CEO3		How to take the statement of a business problem and from this determine suitable logic for solving the problem; then be able to proceed to code that logic as a program written in Java.													
CEO4	Hov	How to test, document and prepare a professional looking package for each business project using javadoc.													
					Course O	utcome									
CO1	S	tuden	its will be a		real world polement obj						ith oop	features	and		
CO2		S	tudents will	be able to	write progr	ams usii	ng basic	data types	s and stri	ngs, usin	g loops.	, Array.			
CO3			will be able techniques		oriorities an	d resolv	e run-ti	me errors	with Mul	tithreadi	ng and l	Exception	on		
CO4			will be able client/serve						raction o	f the use	r with C	GUI and			
G0				P	ROGRAM	ME OU	JTCON	IES				PS	SOs		
COs	1	2	3	4	5	6	8	9	10	11	12	1	2		
CO1	2			2		1			1		1				
CO2	2			1					1		1				
CO3	1		_	1		1			1		1				
CO4	2			2					1		1				

UNIT:1 (10 Hours)

An introduction Object Oriented Programming, Features of Object Oriented Programming Introduction to Java. Difference between C/C++ and Java, Features of Java, First Java Program, Writing the java program, Compiling the program, JVM and its significance in executing a program?, Architecture of JVM. Understanding, Java Tokens, Datatypes, Operators, Control Structures and Arrays, Conditional Statements, Loops/ Iterators, Jumping Statements, Java Arrays, Multidimensional Arrays, Taking Input from keyboard, Command Line Arguments, Using Scanner Class, Using Buffered Reader class.

IINIT-2 (12 Hours)

Introduction to Classes and Objects. Constructors, static Keyword, this Keyword, Array of Objects, Access Modifiers (Public, Private, Protected, Default). Inheritance, Types of Inheritance and Java supported Inheritance, super, Polymorphism, Method Overloading, Constructor Overloading, Method Overriding, Dynamic Method Dispatching. String Manipulations. Wrapper classes, Auto boxing and unboxing. Abstract classes, Interfaces, Multiple Inheritance Using Interfaces, Java API Packages, User-Defined Packages, Accessing Packages, Error and Exception Handling, Types of exceptions Hierarchy of Exception classes, try, catch, finally, throw, throws, Commonly used Exceptions and their details, User defined exception classes.

UNIT:3 (12 Hours)

Multithreading, Thread in Java, Thread execution prevention methods. (yield(), join(), sleep()), Concept of Synchronization, Inter Thread Communication, Basics of Deadlock, Demon Thread, Improvement in Multithreading, Inner Classes, Introduction, Member inner class, Static inner class, Local inner class, Anonymous inner class. IO Streams (java.io package), Byte Stream and Character Stream, Files and Random Access Files, Serialization, Collection Frame Work (java.util), Util Package interfaces, List, Set, Map

UNIT:4 (10 Hours)

Applet Introduction, Life Cycle of an Applet, GUI with an Applet, Abstract Window Toolkit (AWT), Introduction to GUI, Description of Components and Containers, Component/Container hierarchy, Understanding different Components/Container classes and their constructors, Event Handling, Different mechanisms of Event Handling, Listener Interfaces, Adapter classes.

Teaching Methods: Chalk& Board/PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books

- 1. Programming in Java. Second Edition. Oxford higher education. (Sachin Malhotra/ Saurav Choudhary)
- 2. Core Java for beginners. (Rashmi Kanta Das), Vikas Publication

Ref. Books

1. JAVA Complete Reference (9th Edition) Herbalt Schelidt

Graphs: Definitions, Graph representation - Adjacency matrix, Incidence Matrix, adjacency lists, Graph Traversals (BFS & DFS), Single source shortest path algorithm (Dijkstra's Algorithm) Topological Sorting

Hashing: Hashing Functions, Open hashing (chaining), closed hashing (Open addressing – linear probing, quadratic probing, double hashing), rehashing

Subjec	t cod	e				C	ours	e Title	<u> </u>			L	T	P	C	QP		
BMGH	S306	52		Eng	ginee	ring	Ecor	omics	8 & C	osting		3	0	0	3	-		
							P	re -Requ	uisite:									
								ducatio										
							nic aspo	ects of e	ngineer	ing and to be	come pr	ofici	ent in	the ev	/aluati	on of		
engineerin																		
CEO2: to 1	help stu	idents to	grasp	variou	s econ	omics				towards maki	ng econ	omic	decis	ion.				
			Course Outcome Iderstanding the fundamentals of economic theory in general- concept of demand & supply, theories of															
CC)1		nderstanding the fundamentals of economic theory in general- concept of demand & supply, theories of oduction-Laws of returns															
CC	12	O,	erview	luction-Laws of returns rview of cost and revenue concepts: Understood the nature and behavior of cost, cost sheet, Break- n analysis- linear approach and understanding of depreciation with its measurement.														
)	ev	en anal	ysis- li	near aj	pproac	h and u	ındersta	nding o	f depreciation	with its	mea	suren	nent.				
										osals(Private								
CC)3	Ti	me-valı	ue of	Mone	y, Dete	erminat	tion of e	conomi	c life of an a	sset, Rep	place	ment	of exi	sting a	sset with a		
			w asset															
CC)4						al syste	em and	banking	structure, id	ea abou	t con	cept	of nati	onal i	ncome –its		
			easuren															
CC)5			•						of understand	_	liver	se situ	ation	happe	ning in the		
		ec	onomy	and ab						field of engine	eering.		-					
COs			1 -				MME_	OUTCO							PSOs			
	1	2																
CO1	2			2		1	1			1		1			_			
CO2	2			1						1		1						

UNIT:1 (12 Hours)

Engineering Economics -

CO3

Meaning, Nature, Scope, Basic problems of an economy, Micro economics and Macro Economics.

Demand and Supply Analysis -

Meaning of demand, Demand function, Law of Demand and its exceptions, Determinants of demand, Elasticity of demand &its measurement (Simple numerical problems to be solved)

Meaning of supply, Law of supply and its exception, Determinants of supply, Elasticity of supply, Determination of market equilibrium (Simple numerical problems to be solved).

Theory of Production -Production function, Laws of returns: Law of variable proportion, Law of returns to scale

UNIT:2 (10 Hours)

Cost and revenue concepts, Elements of costs, Preparation of cost sheet, Segregation of costs into Fixed and variable costs. Basic understanding of different market structures, Price and output Determination under perfect competition (Simple numerical problems to be solved),

Break Even Analysis -

Linear approach (Simple numerical problems to be solved). Depreciation-Depreciation of capital assert, Causes of depreciation, Methods of calculating depreciation (Straight line

UNIT:3 (12 Hours)

Time value of money -

Interest Analysis - Simple and compound, nominal and effective rate of interest, Cash flow diagrams, Principles of economic equivalence.

Evaluation of engineering projects-

Present worth method, Future worth method, Annual worth method, Internal rate of return method, Cost benefit analysis for public projects. Sensitivity Analysis, Replacement Analysis- Determination of economic life of an asset, Replacement of existing asset with a new asset.

UNIT:4 (10 Hours)

Overview of Indian financial system. Commercial bank, Functions of commercial bank, Credit creation, Central bank, Functions of Central Bank. Inflation-

Meaning of inflation, types, causes, measures to control inflation.

National Income - Definition, Concepts of national income, Method of measuring national income

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books

- 1, Vengedasalam, Deviga. Madhavan, Karunagaran, Principles of Economics, Oxford University Press.
- R. Paneer Seelvan, "Engineering Economics", PHI
 Ahuja,H.L., "Principles of Micro Economics", S.Chand & Company Ltd
- 4. Riggs, J.L., Bedworth and Randhwa, "Engineering Economics", McGraw Hill Education India
- 5. Paul, R.R., Money, Banking and International Trade, Kalyni Publishers.

Ref. Books

- 1. Park, Chan. S, "Fundamental of Engineering Economics", Pearson.
- 2. Engineering Economy by William G.Sullivan, Elin M.Wicks, C. Patric Koelling, Pearson
- 3. Thuesen, G.J., Fabrycky, Engineering Economy, PHI.
- 4. Jhingan, M.L., "Macro Economic Theory", Vrinda Publications Ltd

Subjec	t Coc	de				(Cour	se Tit	le			L	T	P	C	QP		
BMGF	1S306	61	E	ENVI	RON	IME		L EN FETY		EERING	&	3	0	0	3			
]	Pre -Re	quisite:									
						Co	ourse l	Educati	onal O	bjective								
CEO1:The	course	e intro	oduces th	the students to the environmental consequences of industries on of their impacts through technology and legal systems.														
CEO2: To p	rovide	mini	mization	on of their impacts through technology and legal systems.														
				Course Outcome														
C	D 1		Student	1 0 0. 0 .														
C	O2		They w	ill lear	n abou	t treatı	ment o	f water/	waste w	ater								
C	O3		Student	s shoul	ld kno	w abou	it caus	e and re	medies	of environme	ent pollu	tion ar	nd tecl	nnolog	gical a	pproaches		
C	O4		They w	ill und	erstanc	the ir	nporta	nce of e	nvironn	nental safety.								
COs					PRO	GRA	MME	OUTC	OMES						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12		1		2		
CO1	2			2		1	1			1		1						
CO2	2			1 1 1														
CO3	1			1		1				1		1						
CO4	2			2						1		1						

UNIT:1 (10 Hours)

Ecological Concepts: Biotic components, Ecosystem Process: Energy, Food Chain, Water cycle, Oxygen cycle, Nitrogen cycle etc., Environmental gradients, Tolerance levels of environment factor, EU, US and Indian Environmental Law. Chemistry in Environmental Engineering: Atmospheric chemistry, Soil chemistry. Noise pollution- Noise standards, measurement and control. Water Treatment: water quality standards and parameters, Ground water. Water treatment processes, Pre-treatment of water, Conventional process, Advanced water treatment process.

UNIT:2 (12 Hours)

Waste Water Treatment: DO and BOD of Waste water treatment process, pretreatment, primary and secondary treatment of waste water, Activated sludge treatment: Anaerobicdigestion, Reactor configurations and methane production. Air Pollution: Air pollution and pollutants, criteria pollutants, Acid deposition, Global climate change –greenhouse gases, non-criteria pollutants, Air pollution meteorology, and Atmospheric dispersion. Industrial Air Emission Control. Flue gas desulphurization, NOxremoval, Fugitive emissions.

UNIT:3 (10 Hours)

Solid waste, Hazardous waste management, Solid Waste Management, Source classificationand composition of MSW: Separation, storage and transportation, Reuse and recycling, WasteMinimization Techniques. Hazardous Waste Management, Hazardous waste and theirgeneration, Transportation and treatment: Incinerators, Inorganic waste treatment. E.I.A., Environmental auditing.

UNIT:4 (10 Hours)

OccuptionalSafety and Health Acts, Safety procedures, Type of Accidents, Chemical and Heat Burns, Prevention of Accidents involving Hazardous substances, Human error. Hazard Control Measures in steel industry, Petroleum Refinery, Pharmaceutical industry. Fire Prevention -Detection, Extinguishing Fire, Safety Management- Safety Handling and Storage of Hazardous Materials, Corrosive Substances, Hydro Carbons Wastes. Personal Protective Equipments.

Teaching Methods: Chalk& Board/PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books 1. Environmental Engineering, Irwin/ McGraw Hill International Edition, 1997, G. Kiely,

.Environmental Engineering by Prof B.K. Mohapatra, Seven Seas Publication,

3. Environmental Engineering and Safety ,Raut&Sen Scientific Publishers.

Ref. Books 1. Environmental Engineering by Arcadio P. Sincero&Gergoria A. Sincero PHI Publication

2 Environmental Science, Curringham&Saigo, TMH

							Coı	ırse T	itle						
Subject	Cod	le		Me	chan	ical (Opera	ations	Lab		L	T	P	С	QP
BCHP	C312	0											2	1	
							Pre	-Requis	site:						
CEO1:To er	able tl	ne studen	ts to d	evelop	a sour	ıd work	king kr	nowledg	e on dif	ferent type	es of c	rushing	g equipm	nents and	separation
characteristi					•										
CEO2: To K	now the	he signifi	cance	and us	age of	differe	nt part	iculate o	characte	erization pa	aramet	ers, an	d equipn	nent to es	timate
them.															
			Cours	se Out	come:	At the	end of	f the cou	rse, the	students v	vill be	able to)		
CO1		Describ	e the o	peratio	on, as v	vell as	constr	iction an	nd explo	oitation cha	aracter	istics o	of machin	nes for m	echanical
		operatio	ns.												
CO2		Analyz	e and e	evaluat	e the to	echnolo	ogy of	mechan	ical pro	cessing of	Solid	materi	al in ord	er to achi	eve defined
002		characte			o the t	comor	05) 01	meeman	icui pro	veessing of	bona		010	or to dom	eve delline
902															
CO3		Make us	se of k	nowle	ige in i	real tin	ne.								
CO4		Illustra	te the ı	usage o	of wide	specte	er and	sources	of infor	mation as	well as	indiv	idual and	d team wo	ork.
	<u> </u>				PD(CRAN	MME	OUTC	OMES					D	SOs
COs	1	2	3	4	5	6	7	8	9	10		11	12	1	2
CO1	2	2	-	-	-	-	_	-	-	-		-	-	1	
CO2	3	2	_	-	_	-	_	-	-	-		-	-	2	
CO3	3	2	-	-	-	-	-	-	-	-		-	-	1	
	-	-				—				-					

List of experiment:

3

2

CO4

- 1. To find out the average size of particles of a sample (Volume-surface mean dia).
- 2. To determine the critical speed and time of grinding in a ball mill for producing a product with 80% passing a given screen
- 3. To separate a mixture into two fractions using flotation column.
- 4. Determination of the effectiveness of a vibrating screen.
- 5. To verify the Rittinger's and Kick's law using Blake jaw crusher.
- 6. To study the characteristics of batch sedimentation using coal sample.
- 7. To determine the specific cake resistance and filter medium resistance of slurry in Plate and frame filter press.
- 8. To separate a mixture of sand and iron powder by means of tabling.
- 9. To find out the reduction ratio in Roll Crusher and Hammer Mill.
- 10. To study the separation characteristics of sample of mixture by Jigging and Tabling.

2

Subjec	ct cod	de					Cour	se Tit	tle			L	T	P	C	QP				
BCHPC	23110	0				Fluic	l Dyı	namic	s LAI	3		0	0	2	1					
		<u> </u>				Co	ourse I	Educati	onal Ol	jective					I					
CEO1:To	learn e	xperin	entally	to cali	brate f	low m	eters, f	find pre	ssure los	ss for fluid f	lows and	determ	ine pu	ımp c	haracte	ristics				
CEO2: Stu	dents	should	be able	to calc	culate	velocit	y prof	iles by s	implific	ation of equ	ations of	motion	ı in si	mple :	1-D flov	ws.				
				Course Outcome: At the and of the course the students will be able to																
			Co	Course Outcome: At the end of the course, the students will be able to																
C	O 1		Rephra																	
C	22		A 1	ephrase the basic principles of fluid mechanics nalyze fluid flow problems with the application of the momentum and energy equations																
C	O2		Anaiyz	e muia	now I	problei	ns wit	n the ap	piicatio	n of the mon	nentum ar	ia enei	rgy eq	uatioi	18					
C	О3		Explair	the pi	pe flo	ws, mi	xing p	rocesses	s & fluic	l machinery										
C	04		Differe	ntiate 1	he tyr	es of f	low by	, calcula	ating the	Reynolds n	umber									
	J-T		Difficie	iitiate t	• • •					icynolus ii	unioer.		,							
COs		1	1	1	PRO	OGRA	MME	OUTCO	OMES		1			P	SOs					
	1	2	3	4	5	6	7	8	9	10	11	12		1	2					
CO1	3	2		-	-	-	-	-	-	-	-	-		<u>l</u>						
CO2	2	3		-	-	-	-	-	-	1										
CO3	2	3	_	-	-	-	-	-	-	-	-	-		<u> </u>						
CO4	3	2	-	-	-	-	-	-	-	-	-	-	1	2						

List of experiment:

- 1. Venturi Meter Determination of flow rate of fluid flowing inside a pipe.
- 1. Orifice Meter Determination of flow rate of fluid flowing inside a pipe.
- 2. Reynolds's Apparatus Flow pattern characterization using Reynolds's Apparatus.
- 3. Bernoulli's Apparatus To verify the Bernoulli's Equation using Bernoulli's apparatus.
- 4. Pitot tube Determination of point velocity of fluid by using Pitot tube.
- 5. V-Notch Determination of flow rate of a fluid by using V Notch.
- 6. Packed Bed Determination of pressure drop of fluid flowing through a packed bed and Fluidised bed
- 7. Determination of minimum fluidization velocity and pressure drop in a fluidized bed apparatus.
- 9. Centrifugal Pump –To draw the characteristics curves and find out the efficiency in a centrifugal pump.
- 10. Reciprocating Pump To draw the characteristics curves and find out the efficiency of a reciprocating pump.

Subjec	t Cod	e				(Cour	se Titl	le			L	T	P	C	QP		
BCSE	S3151			J	AVA	PR	OGR	RAMN	IING	LAB				2	1			
						C	ourse	Educati	onal O	bjective		I	1					
CE	D1:		The mod olymor		bject o	oriente	d prog	rammin	g: abstr	act data types	s, encaps	ulatior	ı, inhe	eritanc	e and			
CE	D2:		undame nd libra					oriented	l langua	age like Java:	object c	lasses	and ir	nterfac	es, exc	ceptions		
CE	D3:									and from this c as a progra				ogic fo	or solv	ing the		
CE	D4:		How to to co.	Course Outcome														
		•		Course Outcome														
CO) 1		Course Outcome tudents will be able to map real world problems into the Programming language with oop features and implement object oriented principles for reusability tudents will be able to write programs using basic data types and strings, using loops, Array.															
CC)I2	5	tudents	will be	e able	to writ	e prog	rams us	ing bas	ic data types	and strin	gs, usi	ng loo	ps, A	rray.			
CC)3		tudent v Handling			o Assiş	gn pric	orities ar	d resol	ve run-time e	rrors wit	h Mul	tithrea	ading	and Ex	ception		
CC)4									techniques for	or interac	ction o	f the u	iser w	ith GU	II and		
COs		•			PRO	GRA	MME	OUTC	OMES	, 					PSOs			
COS	1	2	3	4	5	6	7	8	9	10	11	12		1		2		
	3	2	1															
	3	3			2		1		1									
	3	2	2 1															
	3	3	3	2		1												

JAVA programs on:

- 1. Introduction, Compiling & executing a java program.
- 2. Data types & variables, decision control structures: if, nested if etc.
- 3. Loop control structures: do, while, for etc.
- 4. Classes and objects.
- 5. Data abstraction & data hiding, inheritance, polymorphism.
- 6. Threads, exception handlings and applet programs
- 7. Interfaces and inner classes, wrapper classes, generics

Subjec	t Cod	e			7	Ther	mo p	hysica	al Lat)		L	T	P	C	QP		
BCHP	C3130	0												2	1			
								Pre -Re	quisite:			•			•			
						C	ourse	Educati	ional O	bjective								
			(Course Outcome: At the end of the course, the students will be able to ical knowledge of Equation of state and thermodynamic property changes in mixing														
CC) 1		Practic															
CC)2		Analys	ysis of the experimental results in mixing.														
CC) 3		Make u	llysis of the experimental results in mixing . Ke use of knowledge in real time.														
CC)4		Illustra	e the u	sage of	wide	specter	and so	irces of	information	as well a	as indiv	vidual	and to	eam w	ork.		
COs					PRC)GRA	MME	OUTC	OMES						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12		1		2		
	3		2 -	-	-	-	-	-	-	-	-	-		1				
CO1	2		3 -	-	-	-	-	-	-	1	-	-		1				
CO2	2		3 -		-		-	-	_	-	-	1		1				
CO3	3		2 -	-	-	-	-	-	-	-	-	-		2				
CO4																		

List of experiment:

- 1. Study of EOS and verification for isothermal, adiabatic and isobaric process.
- 2. Determination of volume change in mixing of two liquids
- 3. Determination of enthalpy change in mixing of two liquids
- 4. Study of vapor liquid equilibrium.
- 5. Calculation of upper critical solution temperature and lower critical solution temperature in LLE.
- 6. Study of solid-liquid equilibrium

UG IN CHEMICAL ENGINEERING

IV SEMESTER [SECOND YEAR]

Sl. No.	Course Category	Course Code	Course Title	L	T	P	Credits
			THEORY				
1	PC	BCHPC4010	Chemical Process Calculation	3	1	0	4
2	PC	BCHPC4020	Mass Transfer-I	3	0	0	3
3	PC	BCHPC4030	Heat Transfer	3	0	0	3
4	PC	BCHPC4040	Chemical Process Technology	3	0	0	3
5	ES	BMEES4050	Material Science	3	0	0	3
6	BBSBS3001 Safety			3	0	0	3
0	DS / 113	BMSHS3062	Engineering Economics and Costing	3			
		PRACTI	CAL / SESSIONAL				
7	PC	BCHPC4120	Mass Transfer-I Lab	0	0	2	1
8	PC	BCHPC4130	Heat Transfer Lab	0	0	2	1
9	PC	BCHPC4140	Chemical Technology Lab	0	0	2	1
10	ES	BMEES4150	Material Testing Lab	0	0	2	1
•		TOTAL	•	18	1	8	23

Subject code	Course Title	L	T	P	C	QP		
BCHPC4010	Chemical Process Calculations	3	0	0	3			
Course Outcome								

Pre-Requisites (If any)-Mathematics, Chemistry, Thermodynamics

Pre-Requisites (If any)-Mathematics, Chemistry, Thermodynamics

Course Educational Objective

CEO1:To teach fundamentals of calculation and its application to solution of mass and energy balance equations for single and network of units

	Course Outcome							
CO1	Demonstrate material balances on unit operations and processes.							
CO2	To follow the material balance calculations involving with and without chemical reactions							
CO3	Evaluate the degrees of freedom to analyze the system.							
CO4	Make use of the concept of humidity and usage of psychometric chart							

COs	PROGRAMME OUTCOMES											PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	0	0	-	-	-	-	-	-	-	-	2	
CO2	3	3	1	0	-	-	-	-	-	-	-	-	1	
CO3	2	2	2	1	-	-	-	-	-	-	-	-	1	
CO4	1	0	0	0	-	-	-	-	-	-	-	-	2	

Unit:1 10 (Hours)

Units, dimensions and conversions, Fundamental concept of stoichiometry- mole concept, density, specific gravity and its scale, composition of solids, liquids and gases- weight fraction, mole fraction, ppm, molarity, normality, molality, Ideal gas laws, equation of state.

Unit:2 12 (Hours)

Solution: Ideal solution, Raoult's law, Non-ideal solution, Henry's law; Vapor pressure, Clausius-Clapeyron equation, Antoine equation, vapors pressure plots, humidity- dry bulb temperature, wet bulb temperature, dew point, saturation, adiabatic saturation temperature, humidity, relative humidity & percent humidity, saturated humidity, humid heat, humid volume, use of humidity chart.

Unit:3 11 (Hours)

Material balances &unit operation- Drying, Evaporation, Dissolution and crystallization, Mixing. Solving material balance with Chemical reaction: The chemical equation & stoichiometry, concept of limiting & excess reactants, conversion, degree of conversion, yield etc. recycle, bypass & purge calculations. Combustion processes.

Unit:4 10 (Hours)

Energy Energy balance concepts & units, Heat capacity, Enthalpy changes with phase change, Heat effects accompanying chemical reaction, Standard heat of reaction at constant pressure & constant volume, effect of temperature on heat of reaction, Adiabatic reaction of temperature ,heat of solution & heat of mixing.

Teaching Mentod (s): Chalk & Board/PPT

Text Books 1: Stoichiometry & process Calculations by-K.V. Narayanan & B-lakshmikatty

2: Basic principles and calculation in chemical engineering by Himmelblau D.H. 5th Edition. PHI, 2001.

Ref. Books 1: Chemical process principles- Hoejen, Watson, John Wiley & Asia pub.

2: Stoichiometry by B.I. Bhatt and S.M. Vora (3rd Ed.) Tata Mc Graw Hill publishingcompany Ltd.New Delhi

(1996)

Subject Code	Course Title	L	Т	P	C	QP
BCHPC4020	MASS TRANSFER-I	3	1	0	4	

Pre-Requisites (If any)-

CEO1: Students will learn to determine mass transfer rates under laminar and turbulent conditions

CEO2:To provide introduction to physical and thermodynamic principles of mass transfer with an emphasis on how these principles affect the design of equipment and result in specific requirements for quality and capacity

Co	ourse	Ou	tcome

CO1	To demonstrate about the diffusion process
CO2	Familiar with special distillation techniques such as steam distillation and azeotropic distillation
CO3	Distinguish the mechanism of absorption, distillation and humidification
CO4	Design the distillation column, absorption tower

Cos			PSOs											
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	0								2			1
CO2	2	2	1	1			3							1
CO3	2	2	1	-	-	-	-	-	-	-	-	-		2
CO4	1	0	0	-	-	-	-	-	-	-	-	-		1

Unit:1 12(Hours)

Diffusion: Introduction to Mass transfer operations, molecular diffusion in fluids, binary solutions, Fick's law, equation of continuity, steady state equimolal counter current diffusion, Stefan-Maxwell equation, diffusivity of gases and liquids, application of molecular diffusion, mass transfer coefficients, in laminar and turbulent flow, Interphase mass transfer, Film theory, Penetration theory, surface-renewal theories, analogy between mass, heat and momentum transfer.

Unit:2 10 (Hours)

Absorption: Solubility of gases in liquids, two components system, multi component system, ideal and non -ideal solutions, choice of solvent for absorption, single component absorption material balance, counter current multistage operations, dilute gas mixtures, non -isothermal operation, tray efficiency, continuous contact equipment, HETP, HTU,NTU concepts for single component absorption.

Unit:3 10 (Hours)

Distillation: Principle of VLE for binary systems, phase diagrams, relative volatility, ideal solutions, azeotropes, enthalpy concentration diagrams, flash vaporization, partial condensation, differential distillation steam distillation, azeotropic and extractive distillation. Continuous distillation: Mc Cabe -Thiele method, Ponchon -Savarit method, Tray efficiencies, introduction to multi component distillation.

Unit:4 13 (Hours)

Humidification operations: Definition of fundamental terms, Psychometric charts, theory of adiabatic saturation and wet bulb temperature, Lewis relation, Gas liquid contact, Dehumidification, AdiabaticHumidification. Equipments: Natural Circulation, Natural draft, Mechanical draft, Spray tower, Spray chamber, Spray pond. Humidity Measurement: Direct chemical method, Hygrometer method, Sling psychrometer, Dew point method, Mirror method.

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures /MOOC/ Internship/Industry Guest Lecture

Text Books 1: Mass Transfer Operations by R E Treybal, McGraw Hill.

2:Unit Operations of Chemical Engineering, 7th ed. by W L McCabe, J C Smith, and P Harriott, McGraw-Hill.

Ref. Books 1: Principles of Mass Transfer and Separation Processes by B K Dutta, PHI.

2: Mass Transfer Operations by A Suryanarayana, New Age International.

Subject code	Course Title L T P C QP										
BCHPC4030	Heat Transfer	3	0	0	3						
	Course Outcome										
	Pre-Requisites (If any)-										
	Course Educational Objective										
	CEO1:To enable the students to learn heat transfer by conduction, convection and radiation and heat transfer equipments like evaporator and heat exchanger										
	Course Outcome										
CO1	Explain the basic concepts and laws of the three modes of heat transfer										
CO2	Apply analytical techniques to the solution of conduction heat-transfer problems										
CO3	CO3 Make use of empirical equations to solve forced and natural convection heat-transfer problems										
CO4	CO4 Solve simple radiation heat transfer problems										

COs	PROGRAMME OUTCOMES												PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	1	0	-	-	-	-	-	-	-	2		1		
CO2	2	2	1	1			3						2		
CO3	2	2	1	-	-	-	-	-	-	-	-	-	1		
CO4	1	0	0	-	-	-	-	-	-	-	-	-	2		

Unit:1 10 (Hours)

Modes of heat transfer, Basic laws of heat transfer, Conduction: Steady-state one, two and three dimensional heat conduction, Heat transfer from extended surfaces, Unsteady state heat conduction in finite and semi-infinite solids, Critical insulation thickness.

Unit:2 10(Hours)

Convection: The convective heat transfer coefficient, introduction to thermal boundary layer, Dimensionless numbers in heat transfer and their significance. Dimensional analysis: Forced Convection, Analogy between heat and momentum transfer: Reynolds's Pradtl and Colburn analogies. Natural Convection: Grashoff number, Natural convection from vertical and horizontal surfaces. Heat Transfer with phase change: Heat transfer from condensing vapors: film and drop-wise condensation. Nusselt equation. Effect of non-condensable gases. Heat transfer to boiling liquids.

Unit:3 10 (Hours)

Description of heat transfer equipments(recuperative and evaporative type), Heat Exchangers: Types, LMTD. Energy balances, Overall heat transfer Coefficients, Heat Exchanger effectiveness. Fouling factors. Types of evaporators, capacity and economy, Boiling point elevation and Duhring's rule, multi effect evaporator: Methods of feeding, Heat balance equation

Unit:4 10 (Hours)

Heat transfer by radiation: Thermal radiation, Black body radiation, Kirchhoff's law, emissivity, grey body, laws of black body radiation, geometric factor, Radiation in enclosures with black surfaces and grey surfaces. Large parallel plates, concentric, cylindrical, spheres. Combined heat transfer by conduction, convection and radiation

Teaching Method (s):Chalk & Board/PPT/Video Lectures

Text Books 1: Mc Cabe W. L. & Smith J. C. & Harriot P, Unit Operations of Chemical Engineering (5th Edition), Mc Graw Hill, New York

2: Arora, Damkundwar, A Course in Heat & Mass Transfer

Ref. Books 1: Kern D. Q., Process Heat Transfer

2: R.K Rajput Heat and mass transfer, S. Chand publication

Subject code	Course Title	L	T	P	C	QP		
BCHPC4040	CHEMICAL PROCESS TECHNOLOGY	3	0	0	3			
Course Outcome								

Pre-Requisites (If any)-

Course Educational Objective

CEO1:To gain knowledge on various aspects of production engineering and understand the practical methods of production in a chemical factory

	Course Outcome							
CO1	Relate the manufacturing of various inorganic and organic chemicals							
CO2	Interpret the process flow diagram and various process parameters							
CO3	Analyze the various solve engineering problems during production							
CO4	Elaborate the modified process to be adopted in the process industry.							

COs		PROGRAMME OUTCOMES											PSOs			
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	3	1	0	0	-	-	-	-	-	-	1			2		
CO2	2	2	1	0			3	-	-	-	-	-		1		
CO3	2	2	1	1	-	-	-	-	-	-	-	-		2		
CO4	1	0	0	0	-	-	-	-	-	-	-	-		1		

Unit:1 10 (Hours)

Unit operations and unit processes, functions of chemical engineer, new emerging areas, Indian chemical industry - An overview, Manufacture of Heavy Chemicals: Caustic Soda & Chlorine, HCL, Soda Ash, Sulphuric acid.

Unit:2 10 (Hours)

Natural Products:-Edible and essential oils, Extraction and Refining of Oil, hydrogenation of Oil, soaps and detergents, glycerin, pulp and paper industry, manufacture of sugar, starch and its derivatives, Industrial & absolute alcohol, paints and varnishes, Natural dyes.

Unit:3 12 (Hours)

Cement: Chemical composition of Portland cement, raw materials, dry and wet process for manufacturing cement clinker, setting and hardening of cement. Glass: Composition of glass, raw materials, manufacturing method of glass- pot furnace and tank furnace, annealing of glass. Ceramic: Basic raw materials, white-wares, manufacturing process of porcelain and their forming operations.

Unit:4 13 (Hours)

Polymerization industry: Fundamentals, polymerization technology, Production of thermoplastic and thermo-setting resins: polyethylene, PVC, polypropylene, Polystyrene, ABS resins, Phenol formaldehyde, Urea formaldehyde, Epoxy resins, Poly vinyl acetate, Polylactic acid, natural and synthetic rubber(SBR, Butyl rubber) and natural and synthetic fibers(Viscose Rayon, polyamides, polyesters, Terelyne)

Teaching Method (s):Chalk & Board/PPT/Video Lectures

Text Books 1: Shreve's Chemical Process Industries, 5th ed. by G T Austin, McGraw-Hill.

2: Dryden's Outlines of Chemical Technology, M. Gopala Rao, Marshall Sittig, East West Press, 1997

Ref. Books 1: Faith, W.L., Keyes, D.B. and Clark, R.L., Industrial Chemicals, 4th Edition, John Wiley.

2: "Textbook of chemical Technology" Vol-1 & Vol-2 by G N Pandey, Vikas Publishing

Subject Code	MATERIALS SCIENCE	L	T	P	C	QP				
BMEES4050		3	0		3					
	Pre -Requisite:		•							
	Course Educational Objective									
CEO1: Provides a deformations.	basic knowledge about the material properties and testing methods a	long	with	crysta	ıl stru	ctures and				
CEO2: Explains th	e importance of phase diagrams and study of variousinary and ternary phase	e diag	rams							
	Course Outcome									
CO1	Illustrate the crystal structure, mechanical properties; classify the mapplications	ateria	ls an	d thei	r suit	ability for				
CO2	Classify cast irons and study their applications.									
CO3	Interpret the phase diagrams of materials.									

Select suitable heat-treatment process to achieve desired properties of metals and alloys UNIT:1 (No of Hours)

Classification of Engineering Materials, Characteristic property of metals, bonding in solids, ionic, covalent and metallic bond, Crystal systems, crystallographic planes and directions, atomic packing efficiency, crystal imperfection and voids in common crystal systems. Solidification of pure metal, Homogeneous and heterogeneous nucleation processes, cooling curve, concept of super cooling, microstructures of pure metals, solidification of metal in ingot mould

UNIT:2 (No of Hours)

Concept of alloy formation, types of alloys, solid solutions, factors governing solids solubility viz. size factor, valence factor, crystal structure factor and chemical affinity factor; order-disorder trans formation. Binary phase diagrams a) Isomorphism system, (b) Eutectic system, (c) Peritectic system, (d) Eutectoid system and (e) Peritectoid system. (f) Allotropic transformation. Lever rule and its application, Interpretation of solidification behaviors and microstructure of different alloys belonging to those systems, Effect of non-equilibrium cooling, coring and homogenization. Iron-cementite and iron-graphite phase diagrams,

UNIT:3 (No of Hours)

Equilibrium cooling behaviour of hypo, eutectoid, hyper eutectoid steels. microstructure and properties of different alloys. Heat treatment of steels, i.e. annealing, normalizing, hardening and tempering; microstructural effects brought about by these processes and their influences on mechanical properties; Concept of T.T.T diagram, factor affecting hardenability.

Alloy steels: Stainless steel, tool steel, HSS, high strength low alloy steel, heat treatment, properties, microstructure and applications. Types of cast irons, their microstructures and typical uses. Concept of plastic deformation of metals, yield point phenomena, CRSS, Recovery recrystallization and grain growth.

(No of Hours)

Optical properties of Materials: Scattering, Refraction, Theory of Refraction and absorption, Atomic Theory of optical properties. Lasers, Optical fibres- Principle, structure, application of optical fibres.

Plastic-: Thermosetting and thermoplastics.

Ceramics: Types, structure, Mechanical properties, application

Composite Materials: Agglomerated Materials: Cermets .Reinforced Materials: Reinforced Concrete. Glass fiber reinforced plastics, Carbon fibre reinforced plastics, fibre reinforced plastics, laminated plastic sheets. Tefnol, Properties of composites, Metal matrix composites, manufacturing procedure for fiber reinforced composite.

Introduction to Nano-materials

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Teaching Methods: Chalk& Board/PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books

CO4

1. Introduction to physical metallurgy – Sydney Avner

Fundamentals of materials science and engineering W. Callister

Ref. Books

Mechanical Metallurgy by Dieter, Tata MacGraw Hill

Engineering Physical Metallurgy and Heat Treatment by Y.Lakhtin, Mir Publisher, Moscow.

Subject code	Course Title	L	T	P	С	QP
BMGHS3062	Engineering Economics & Costing	3	0	0	3	-

Pre -Requisite:

Course Educational Objective

CEO1: to understand the significance of the economic aspects of engineering and to become proficient in the evaluation of engineering proposals in terms of worth and cost

CEO2: to help students to grasp various economics concepts and theories towards making economic decision.

	Course Outcome									
CO1	Understanding the fundamentals of economic theory in general- concept of demand & supply, theories of production-Laws of returns									
CO2	Overview of cost and revenue concepts: Understood the nature and behavior of cost, cost sheet, Break-even analysis- linear approach and understanding of depreciation with its measurement.									
CO3	Acquainted with evaluation of engineering proposals(Private and public) by learning the concept of Timevalue of Money, Determination of economic life of an asset, Replacement of existing asset with a new asset etc.									
CO4	Familiar with Indian financial system and banking structure, idea about concept of national income –its measurement and inflation.									
CO5	Ultimately learners of the subject get the benefits of understanding the diverse situation happening in the economy and able to make rational decision in the field of engineering.									

COs		PROGRAMME OUTCOMES											PSOs			
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	2			2		1	1			1		1				
CO2	2			1						1		1				
CO3	1			1		1				1		1				
CO4	2			2						1		1				

UNIT:1 (12 Hours)

Engineering Economics -

Meaning, Nature, Scope, Basic problems of an economy, Micro economics and Macro Economics.

Demand and Supply Analysis -

Meaning of demand, Demand function, Law of Demand and its exceptions, Determinants of demand, Elasticity of demand &its measurement (Simple numerical problems to be solved)

Meaning of supply, Law of supply and its exception, Determinants of supply, Elasticity of supply, Determination of market equilibrium (Simple numerical problems to be solved).

Theory of Production -Production function, Laws of returns: Law of variable proportion, Law of returns to scale

UNIT:2 (10 Hours)

Cost and revenue concepts, Elements of costs, Preparation of cost sheet, Segregation of costs into Fixed and variable costs. Basic understanding of different market structures, Price and output Determination under perfect competition (Simple numerical problems to be solved),

Break Even Analysis -

Linear approach (Simple numerical problems to be solved). Depreciation-Depreciation of capital assert, Causes of depreciation, Methods of calculating depreciation (Straight line

UNIT:3 (12 Hours)

Time value of money -

Interest Analysis - Simple and compound, nominal and effective rate of interest, Cash flow diagrams, Principles of economic equivalence.

Evaluation of engineering projects-

Present worth method, Future worth method, Annual worth method, Internal rate of return method, Cost benefit analysis for public projects. Sensitivity Analysis, Replacement Analysis- Determination of economic life of an asset, Replacement of existing asset with a new asset.

UNIT:4 (10 Hours)

Overview of Indian financial system. Commercial bank, Functions of commercial bank, Credit creation, Central bank, Functions of Central Bank. Inflation-

Meaning of inflation, types, causes, measures to control inflation.

National Income - Definition, Concepts of national income, Method of measuring national income

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books

- 1, Vengedasalam, Deviga. Madhavan, Karunagaran, Principles of Economics, Oxford University Press.
- 2. R. Paneer Seelvan, "Engineering Economics", PHI
- 3. Ahuja, H.L., "Principles of Micro Economics", S.Chand & Company Ltd
- 4. Riggs, J.L., Bedworth and Randhwa, "Engineering Economics", McGraw Hill Education India
- 5. Paul, R.R., Money, Banking and International Trade, Kalyni Publishers.

- 1. Park, Chan. S, "Fundamental of Engineering Economics", Pearson.
- 2. Engineering Economy by William G.Sullivan, Elin M.Wicks, C. Patric Koelling, Pearson
- 3. Thuesen, G.J., Fabrycky,. Engineering Economy, PHI.
- 4. Jhingan, M.L., "Macro Economic Theory", Vrinda Publications Ltd

Subjec	t code	e		Course Title L T										T	P	C	QP
BMGH	IS306	1		ENVIRONMENTAL ENGINEERING & SAFETY 3 0									0	0	3		
								P	re -Req	uisite:							
							Cor	urse E	ducatio	nal Ob	jective						
CEO1:The	course	e intr	odu	ces the	e stude	nts to	the env	vironm	nental co	nseque	nces of indus	stries					
CEO2: To	provide	mir	nimiz	zation	of the	ir impa	acts thr	ough t	technolo	gy and	legal system	s.					
								Co	urse O	ıtcome							
CC)1		Stu	dents	will ur	ndersta	nd the	ecolo	gical sys	stem of	environment						
CC)2		The	ey will	l learn	about	treatm	ent of	water/w	aste wa	ter						
CC	03		Stu	dents	should	know	about	cause	and rem	nedies o	f environme	nt polluti	on aı	nd tec	hnolo	gical a	pproaches
CC)4		The	ey will	l under	stand	the imp	portan	ce of en	vironme	ental safety.						
COs						PRC)GRA	MME	OUTC	OMES						PSO	s
COs	1	2	2	3 4 5 6 7 8 9 10 11 12 1 2										2			
CO1	2				2		1	1			1		1				
CO2	2				1						1		1				
CO3	1				1		1				1		1				
CO4	2																

UNIT:1 (10 Hours)

Ecological Concepts: Biotic components, Ecosystem Process: Energy, Food Chain, Water cycle, Oxygen cycle, Nitrogen cycle etc., Environmental gradients, Tolerance levels of environment factor, EU, US and Indian Environmental Law. Chemistry in Environmental Engineering: Atmospheric chemistry, Soil chemistry. Noise pollution- Noise standards, measurement and control. Water Treatment: water quality standards and parameters, Ground water. Water treatment processes, Pre-treatment of water, Conventional process, Advanced water treatment process.

UNIT:2 (12 Hours)

Waste Water Treatment: DO and BOD of Waste water treatment process, pretreatment, primary and secondary treatment of waste water, Activated sludge treatment: Anaerobicdigestion, Reactor configurations and methane production. Air Pollution: Air pollution and pollutants, criteria pollutants, Acid deposition, Global climate change –greenhouse gases, non-criteria pollutants, Air pollution meteorology, Atmospheric dispersion. Industrial Air Emission Control. Flue gas desulphurization, NOxremoval, Fugitive emissions.

UNIT:3 (10 Hours)

Solid waste, Hazardous waste management, Solid Waste Management, Source classification and composition of MSW: Separation, storage and transportation, Reuse and recycling, WasteMinimization Techniques. Hazardous Waste Management, Hazardous waste and theirgeneration, Transportation and treatment: Incinerators, Inorganic waste treatment. E.I.A., Environmental auditing.

UNIT:4 (10 Hours)

OccuptionalSafety and Health Acts, Safety procedures, Type of Accidents, Chemical and Heat Burns, Prevention of Accidents involving Hazardous substances, Human error. Hazard Control Measures in steel industry, Petroleum Refinery, Pharmaceutical industry. Fire Prevention -Detection, Extinguishing Fire, Safety Management- Safety Handling and Storage of Hazardous Materials, Corrosive Substances, Hydro Carbons Wastes. Personal Protective Equipments.

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books 1. Environmental Engineering, Irwin/McGraw Hill International Edition, 1997, G. Kiely,

.Environmental Engineering by Prof B.K. Mohapatra, Seven Seas Publication, Cuttack

3. Environmental Engineering and Safety ,Raut&Sen Scientific Publishers.

Ref. Books 1. Environmental Engineering by Arcadio P. Sincero&Gergoria A. Sincero PHI Publication

2 Environmental Science, Curringham&Saigo, TMH

Subject	code					Co	urse	Title				L	T	P	C	QP
BCHPC	4140			(Chen	nical	Tecl	hnolog	gy La	b				2	1	
							Co	urse Ou	tcome				•		•	
CEO:To le	arn ba	sic prin	ciples involved in analysis and synthesis of different organic derivatives													
							Co	urse Ou	tcome							
CO1		Relate	late the manufacturing of various inorganic and organic chemicals													
CO2		Interp	ret the	proces	s flow	diagra	am and	various	proces	s parameters						
CO3		Analy	ze the	variou	s solve	engin	eering	problen	ns durir	g production						
CO4		Design	n a pla	nt layo	ut.											
COs					PRO	GRA	MME	OUTC	OMES						PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	2	1		2
CO1	3	1	0	0	-	-	-	-	-	-	1					2
CO2	2	2	2 1 0 3 2													
CO3	2	2	1	1	-	-	1	-	_	-	-	-				2
CO4	1	0	0 0 0 1													

LIST OF EXPERIMENTS:

- 1. Manufacture of soap from vegetable oil.
- 2. Determination of saponification value of the given oil sample.
- 3. Determination of acid value of the given oil sample.
- 4. Estimation of iodine value of oil
- 5. Estimation of nitrogen in nitrogenous fertilizer.
- 6. Preparation of phenol formaldehyde resin.
- 7. Preparation of jam/jelly from red apple.
- 8. Preparation of coloured pigments and dyes.
- 9. Determination of CaO in Cement.
- 10. Determination of alkalinity in water sample.
- 11. Determination of concentration of sugar solution by Refractometer.
- 12. Preparation of manganese dioxide nano particles or alumina-particles.
- 13. Preparation of potash alum.
- 14. Preparation of urea formaldehyde resin.

Subject code	Course Title L T P C QP												
BCHPC4120	Mass Transfer-I Lab	Mass Transfer-I Lab 2 1											
	Pre -Requisite:												
	Course Outcome: At the end of the course, the students will be	able	to										
CEO:To train the s	tudents to develop sound working knowledge on different types of mass tra	ansfei	equi	pment	S								
Course Outcome:	At the end of the course, the students will be able to												
CO1	Explain about the diffusion process												
CO2	Describe the operation of cooling tower												
CO3	Distinguish the mechanism of absorption, distillation and humidification												
CO4	Design the distillation column												

COs		PROGRAMME OUTCOMES											PSOs			
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	2	1	0								2		2			
CO2	2	2	1	1			3						2			
CO3	2	2	1	-	-	-	-	-	-	-	-	-	1			
CO4	1	0	0	-	-	-	-	-	-	-	-	-	2			

LIST OF EXPERIMENTS:

- 1. Determination of diffusion coefficient for carbon tetrachloride -air system by using vapour-air diffusion apparatus.
- 2. Study of vapour -liquid equilibrium curve for methanol-water system.
- 3. Verification of Rayleigh's equation through simple distillation for binary mixture of water and ethanol.
- 4. Determination of vaporization and thermal efficiencies in steam distillation of the given organic liquid i.e. nitrobenzene or aniline.
- 5. Study of lab scale bubble cap distillation column at different reflux ratios.
- 6. Calculation of height equivalent to a theoretical plate (HETP) of packed bed distillation column at total reflux for a binary system of methanol and water using Fenske's equation.
- 7. Determination of number of plates of packed bed distillation column at varying reflux ratios for a binary mixture of methanol and water using Mc Cabe Thiele diagram.
- 8. Study of the phenomenon of surface evaporation and determine the Humus equation constant.

	Subject	code		course title L T P C QP													
]	BCHPC	4130				Н	leat '	Tran	sfer L	ab					2	1	
			•	Pre -Requisite:												•	
							Cou	rse Ec	ducation	ıal Obj	ective						
(CEO1:To e	nable t	he stude	ents to	develo	p a soi	and wo	orking	knowled	lge on	different type	s of hear	t tran	sfer e	quipn	nents	
							Co	urse E	ducation	al Obje	ective						
	CO1		Expla	xplain the basic concepts and laws of the three modes of heat transfer													
	CO2		Apply	y analy	tical te	echniqu	ues to	the sol	ution of	conduc	tion heat-trai	nsfer pro	blen	ns			
	CO3		Make	use of	empii	rical ec	uation	is to so	lve forc	ed and	natural conve	ection he	at-tr	ansfe	r prob	lems	
	CO4		Solve	simpl	e radia	tion he	eat trar	isfer p	roblems								
	CO.		-1			PRO	OGRA	MME	OUTCC	MES						PSOs	
	COs	1	2	3	4	5	6	7	8	9	10	11	12	2	1		2
	CO1	2	0	1								2			1		
	CO2	2	1	1 2 1 3 2													
	CO3	2	1	2		-	-	-	-	-	-	-	_		1		
	CO4	1	0														

LIST OF EXPERIMENTS:

- 1 Study of parallel flow and counter flow heat exchanger
- 2. Study of Calendria type evaporator
- 3. Study of Shell and Tube heat exchanger
- 4. Study of Vertical and Horizontal condenser
- 5. Study of Composite Wall
- 6. Study of Bare and Fin Tube heat exchanger
- 7. Study of Film wise and Drop wise condensation apparatus
- 8. Study of Jacketed Vessel
- 9. Determination of Thermal Conductivity of Liquid

	Course Title					
Subject Code	Material Testing Lab	L	T	P	C	QP
BMEES4150				2	1	

Pre -Requisite: Bonding in Solids, Grain, Crystal Structure, Packing Density

Course Educational Objective

CEO1: Project an introductory view of the field of materials science within the framework of science and engineering disciplines.

CEO2: Provide a smooth link between the basic knowledge of science and engineering courses.

CEO3: Better prepare would-be materials engineers on ways to tackle day-to-day materials problems in professional engineering careers.

CEO4: Able to operate as effective engineers or scientists in metallurgical and materials industries or related fields.

Course out	comes: At the end of the course, the student will be able to:
CO1	Identify the branches of physical metallurgy and the causes of various types of crystal imperfections.
CO2	Understand the properties of materials and their applications based on the properties.
CO3	Classify steels and cast iron based on microstructure.
CO4	Evaluate the hardness and hardeneability of various treated and untreated steels.

List of experiment:

- 1. Preparation of crystal models SC, BCC, FCC, CPH crystals
- 2. Preparation and study of the Micro Structure of pure metals like Iron, Cu and Al.
- 3. Preparation and study of the Microstructure of Mild steels, low Carbon steels, high Carbon steels.
- 4. Study of the Micro Structures of White cast iron, Grey Cast Irons, Malleable cast iron, Nodular cast iron etc.
- 5. Study of the Micro Structures of Non-Ferrous alloys Brass, Bronze, aluminum alloys.
- 6. Study of the Micro structures of Heat treated steels Annealed Normalized, Hardened.
- **7.** Hardeneability of steels by Jominy End Quench Test.
- **8.** To find out the hardness of various treated and untreated steels.

V SEMESTER

Sl. No.	Course Category	Course Code	Course Title	L	T	P	Credits
			THEORY				
1	PC	BCHPC5010	Process control and Instrumentation	3	1	0	4
2	PC	BCHPC5020	Mass Transfer-II	3	0	0	3
3	PC	BCHPC5030	Chemical Reaction Engineering-I	3	0	0	3
		BCHPE5041	Computational Fluid Dynamics				
4	DE	BCHPE5042	Advanced Numerical Methods				2
4	PE	BCHPE5043	Process utility and Industrial Safety	3	0	0	3
		BCHPE5044	Corrosion Engineering				
5	OE	B**OE505*	Open Elective - 1	3	0	0	3
		P	RACTICAL / SESSIONAL		,	•	1
6	PC	BCHPC5110	Process control Lab	0	0	2	1
7	PC	BCHPC5120	Mass Transfer-II Lab	0	0	2	1
8	PC	BCHPC5130	Chemical Reaction Engineering-I Lab	0	0	2	1
9	EC	BTPEC5150	0	0	2	1	
10	EC	BTPEC5170	^Summer Internship-I	0	0	2	1
		15	1	10	21		

Subject code	Course Title	L	T	P	C	QP
BCHPC5010	PROCESS CONTROL AND INSTRUMENTATION	3	1	0	4	

Pre-Requisites (If any)-

Course Educational Objective

CEO1: To gain the knowledge of different process instruments, , To design various control schemes and to apply the control system in various processes.

CEO2:To understand dynamic modeling of a physical process using first principles and to convert the model to a form amenable to solution and analysis

	Course Outcome										
CO1	Describe the stages involved in the development of a process model.										
CO2	Create a chemical engineering problem as a mathematical model from basic engineering principles.										
CO3	Explain the appropriate numerical solutions to be used in solving the models										
CO4	Classify various simulation tools for solving the chemical engineering models developed.										

COs			PSOs											
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	0	-	2	-	-	-	-	-	-	-	2	
CO2	1	1	1	-	2	-	-	-	-	-	-	-	2	
CO3	2	2	1	-	2	-	-	-	-	-	-	-	1	
CO4	1	0	0	-	0	-	-	-	-	-	-	-	2	

Unit:1 10 (Hours)

Laplace transformation, application to solve ODEs. Open-loop systems, first order systems and their transient response for standard input functions, first order systems in series, linearization and its application in process control, second order systems and their dynamics; transportation lag.

Unit:2 10 (Hours)

Closed loop control systems, development of block diagram for feed-back control systems, servo and regulatory problems, transfer function for controllers and final control element, Block diagram of a Chemical Reactor Control system, principles of pneumatic and electronic controllers, Closed loop transfer functions, transient response of simple control systems, Stability, Root locus.

Unit:3 10 (Hours)

Introduction to frequency response of closed-loop systems, control system design by frequency response techniques, Bode diagram, stability criterion, Advanced control strategies- Cascade control, feed forward control, ratio control, Dead time compensation, internal model control, controller tuning and process identification, control valves.

Unit:4 10 (Hours)

Introduction to sampled data controllers-sampling and Z-transforms, sampled data control of a first order process with transportation lag, Design of sampled data controllers. Control of distillation towers and heat exchangers, introduction to computer control of chemical processes.

Principles of measurements and classification of process instruments, measurement of temperature, pressure, fluid flow, viscosity, pH, concentration, humidity of gases.

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures

Text Books

- 1. Process Systems Analysis and Control, 3rd ed. by D R Coughanowr and S E LeBlanc, McGraw-Hill.
- 2. Chemical Process Control: An Introduction to Theory and Practice by G Stephanopoulos, PHI.
- 2. Industrial Instrumentation and Control, 3rd ed. by S K Singh, McGraw-Hill.

Ref. Books 1: Process Dynamics & Control by J M Douglas, PHI.

2: Computer Aided Process Control by S K Singh, PHI

Subject code	Course Title	L	Т	P	C	QP
BCHPC5020	MASS TRANSFER – II	3	0	0	3	

Pre-Requisites (If any)-Mass Transfer-I, Heat Transfer, Chemical Process Calculations

Course Educational Objective

CEO1: To teach the students different separation techniques.

CEO2:At the end of the study students will come to know the design of a adsorber and calculations involved in liquid-liquid extraction and solid liquid extraction

	Course Outcome									
CO1	Understanding fundamentals of some major Mass transfer operations like adsorption, drying									
CO2	Analyse the situations where liquid-liquid extraction might be preferred to distillation leaching									
CO3	Development of design processes for cooling tower, fixed-bed adsorption.									
CO4	Building foundation for process intensification and innovations for novel systems of mass transfer									

COs PROGRAMME OUTCOMES													PSOs		
COS	1 2 3 4 5 6 7 8 9 10 11 12									17	1	2			
2	1	0								2		2	1		
2	2	1	1			3						2	2		
2	2	1	-	-	-	-	-	-	-	=	-	2	1		
1	0	0	-	-	-	-	-	-	-	=	-	1	2		

Unit:1 10 (Hours)

Liquid - liquid Operations : Extraction : Introduction, liquid - liquid equilibrium, analytical and graphical solutions for single and multistage operations, continuous, counter current operation without and with reflux, equipments for liquid liquid extraction.

Unit:2 10 (Hours)

Leaching: Operation of solid, steady and unsteady state operation, analytical methods for single and multistage operations, Leaching by percolation through stationary solid beds, moving bed leaching, counter current multiple contact (shank's system), equipments.

Unit:3 13 (Hours)

Adsorption: Theory of adsorption, Industrial adsorbents, adsorption equilibrium, Adsorption isotherms, single and multistage operations, Ion – Exchange: Principle of Ion exchange, techniques and applications. Introduction to crystallization, Mier's super saturation theory, crystallization equipment: continuous vacuum crystallizer, Draft tube-baffle crystallizer Swenson-walker crystallizer. Material and energy balance calculations in batch crystallizers.

Unit:4 10 (Hours)

Drying: Equilibria, Drying rate curve, Batch and continuous drying. Time of drying and calculations, mechanism of batch drying, equipments for batch and continuous drying operations. Design of dryers.

Teaching Mentod (s): Chalk & Board/PPT/Video Lectures

Text Books 1: Treybal R. E., Mass Trasnfer Operation, Mc Graw Hill.

2:Mc Cabe & Smith. Unit Operation in Chemical Engineering, Mc Graw Hill & Kogakusha.

Ref. Books 1: C.J. Geankoplis, Transport Processes and Unit Operations, 3rd Edition, Prentice Hall, India, 1993.

2: Mass Transfer Operations by A Suryanarayana, New Age International.

Subject code	Course Title	L	T	P	C	QP							
BCHPC5030	BCHPC5030 Chemical Reaction Engineering-I												
	Course Educational Objectives												
1.Students gain knowledge on different types of chemical reactors,													
2.Design of chemica	2.Design of chemical reactors under isothermal and non-isothermal conditions												

Pre-Requisites (If any)-Mass Transfer-I, Heat Transfer, Chemical Process Calculations

CO1	Know the basic knowledge about chemical reactions and development of rate laws for homogeneous reactions.
CO2	Design and analysis of ideal reactors for single and complex reactions
CO3	Determine optimal ideal reactor design for multiple reactions for yield or selectivity
CO4	Predict reactor performance when for non-isothermal reactor.

COs			PSOs											
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1	0	0	-	-	-	-	-	-	-	-	2	
CO2	1	3	2	0	-	-	-	-	-	-	-	-	2	
CO3	2	1	3	0	-	-	-	-	-	-	-	-	1	
CO4	0	1	0	3	-	-	-	-	-	-	-	-	2	

Unit:1 Kinetics of Homogeneous Reactions

10 (Hours)

Introduction and overview of the subject, kinetics of homogeneous reactions, elementary and non-elementary reactions, Concentration and temperature dependent term of a rate equation, Collision theory, Transition - state theory and Arrhenius theory.

Unit:2 Interpretation of batch reactor data

12 (Hours)

Constant volume batch reactor, Variable volume batch reactor, Integral and differential methods of kinetic analysis, empirical reactions of nth order, irreversible reactions in series and parallel, Autocatalytic reactions, Analysis of total pressure data obtained in a constant-volume system, First and second order reversible reactions, Reactions of shifting order,)

Unit:3 Isothermal Reactor Design

10(Hours)

Ideal reactors for a single reaction - Ideal batch reactor, Steady-state mixed flow reactor, Steady-state plug flow reactors; Design for single reactions - Size comparison of single reactors, Multiple reactor systems, Recycle reactor

Unit:4 13(Hours)

Design for Multiple Reactions and Temperature & Pressure Effects.

Introduction to design of parallel reactions, Qualitative and quantitative discussion on product distribution, Contacting patterns, Reactor Size and arrangement, Selectivity & Yield Reversible first order reaction, First order followed by zero order reaction, Zero order followed by first order reaction

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures

Text Books 1: Levenspiel O. Chemical Reaction Engineering, Wiley International

2: Fogler H. S., Chemical Kinetics and Reactor Calculation.

Ref. Books 1: Smith J. M., Chemical Engineering Kinetics, Mc Graw Hill.

- 2: Wales J. M., Kinetics for Chemical Engineering, Mc Graw Hill.
- 3. Froment G.F & K.B. Bischoff, "Chemical Reaction Analysis and Design", John Wiley and Sons, 1979

Subject code	ubject code Course Title L T P												
BCHPE5041 COMPUTATIONAL FLUID DYNAMICS 3 0 0 3													
	Course Outcome Pre-Requisites (If any)-												
	Course Educational Objective												
CEO1:To learn vari	ous computational techniques for analyzing and solving chemical engine	ering	g prob	olems.									
CO1	Explain the basic principles of mathematics and numerical concepts of	f flui	d dyr	amics	S.								
CO2	Develop governing equations for a given fluid flow system.												
CO3													
CO4	CO4 Solve computational fluid flow problems using finite volume techniques.												
COs	PROGRAMME OUTCOMES			P	SOs								

COs					PSOs									
003	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	1			-	-	-	-	-	-	-	2	
CO2	2	1	2		1	-	-	-	-	-	-	-	2	
CO3	1	1	2		2	-	-	-	-	-	-	-	1	
CO4	1	1	0		1	-	-	-	-	-	-	-	2	

Unit:1 11(Hours)

Introduction to CFD, Conservation laws of fluid motion-Governing equations of fluid flow and heat transfer, Equation of state, Navier Stokes equations for a Newtonian fluid – Governing equations of the flow of compressible Newtonian fluid, Differential and integral forms of the general transport equations, Turbulence and its modeling-effect of turbulence on time-averaged Navier-stoke equations, characteristics of turbulent flow, turbulent models, inviscid flow, boundary layer approximation.

Unit:2 13 (Hours)

Basic Computational techniques, Finite volume method for diffusion problems-One-dimensional, two dimensional and three dimensional steady state diffusion problems, The finite volume method for convective-diffusion problems- Steady one-dimensional convection and diffusion , Assessment of the central differencing scheme for convective diffusion problems, The upwind differencing scheme, The hybrid differencing scheme , Higher order differencing schemes for convective diffusion, Finite volume method for unsteady flow-one dimensional unsteady heat conduction, Discretisation of transient convection-diffusion equation.

Unit:3 12(Hours)

Solution algorithms for pressure-velocity coupling in Steady flows-Introduction, The staggered grid , The momentum equations , The SIMPLE algorithm, The SIMPLER algorithm, The SIMPLEC algorithm, The PISO algorithm, Transient SIMPLE algorithm. Solution of discretised equations-introduction, the tri-diagonal matrix algorithm, Application of TDMA to two dimensional problems, Application of the TDMA method to three-dimensional problems.

Unit:4 10 (HourS)

Advanced topics and Application-combustion modeling, body fitted coordinate system, advanced applications, aerospace applications, automobile applications, biomedical applications.

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures

Text Books

1. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed. by H Versteeg and W Malalasekra, Pearson.

Reference Books

- 1. Computational Fluid Dynamics: The Basics with Applications, J D Anderson, McGraw-Hill.
- 2. Fundamentals of Computational Fluid Dynamics, T K Sengupta, University Press.

Subject code	Course Title	L	T	P	C	QP								
BCHPE5042	ADVANCED NUMERICAL METHODS	3	0	0	3									
Course Outcome														
Pre-Requisites (If any)-														
CO1	Solve a linear system of equations and non-linear algebraic or transcappropriate numerical method	endent	al equ	ation	using a	an								
CO2	Illustrate a function using an appropriate numerical method													
CO3														
CO4 Explain partial differential equations using an appropriate numerical method														

COs					PRO	GRA	MME	OUTC	OMES				P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	1	-		-	-	-	-	-	-	-	2	
CO2	2	2	-	1		-	-	-	-	-	-	-	2	
CO3	2	1	1	-		-	-	-	-	-	-	-	1	
CO4	1	2	-	2	-	-	-	-	-	-			2	

Unit:1 10hrs

Interpolation: Piecewise Linear Interpolation, Piecewise Quadratic Interpolation, Piecewise Cubic Hermite Interpolation, Piecewise Spline Interpolation. Numerical Differentiation: First Derivative, Higher Derivatives, Partial Derivative, Richardson's Extrapolation. Romberg algorithm for numerical integration. Chemical engineering problems where the above mentioned numerical schemes will be illustrated in details.

Unit:2 10hrs

Eigen values and Eigen Vectors: Basic power method, Rayleigh Quotient, Shifted power method, Accelerating convergence, Inverse power method, Basic QR method, Better QR method, Finding eigen vectors, Accelerating convergence. Fourier methods: Discrete Fourier Transforms, Fast Fourier Transforms, Matrix form of FFT, Algebraic form of FFT, Mixed-Radix FFT.

Unit:3 10hrs

Ordinary Differential Equations: Adams-Bashforth Methods, Adams-Moulton Methods, Adams Predictor-Corrector methods, Other Predictor-Corrector methods (Simpson's method and Milne's method). Application in chemical and biochemical reaction.

Unit:4 10hrs

Parabolic Partial Differential Equation: Explicit Method, Implicit method, Crank-Nicolson method. Hyperbolic Partial Differential Equation: Explicit Method, Implicit method. Elliptic Partial Differential Equation: Finite-difference method. Convergence and stability criteria of these methods. Application in unsteady-state heat transfer through a slab and unsteady-state tubular reaction problem.

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures

Text Books 1: Applied Numerical Analysis Using MATLAB, 2nd ed. by L V Fausett, Pearson.

Ref. Books 1: Atkinson, K.E., "An Introduction to Numerical Analysis", John Wiley & Sons, 1978.

2: Gupta, S. K., "Numerical Methods for Engineers, New Academic Science, 2012. Press,

Subject	t code					C	ours	e Title	;			L	T	P	C	QP
ВСНРІ	E5043		PR	OCI	ESS I			AND ETY	IND	USTRIAI	L	3	0	0	3	
							Co	urse Ot	ıtcome							
							Pre-R	equisite	s (If an	y)-						
	Course Educational Objective CEO1: This course will provide effective use of chemical industries utilities.															
CEO1: Thi	s course	will p	rovide	effect	ive us	e of ch	emical	lindustr	ies utili	ties.						
CEO2: Em	-			dge of	loss p	revent	ion, pe	ersonal s	afety, i	ndustrial saf	ety, haza	ırd an	alysis	s, toxio	cology	and
CO	1	Cal	lculate	the re	quiren	nents o	f wate	r and air	and the	eir applicatio	ns as uti	lities				
CO	2	Cal	lculate	the ste	eam re	quiren	ent an	d its app	olicatio	ns as utility.						
CO	3	Eva	aluate	and ap	ply the	e vario	us risk	assessn	nent me	thods in indu	ustries.					
CO	4	Do	the ha	zard a	nalysis	s for di	fferen	t industr	ies usin	g HAZOP.						
COs		•			PRO	GRA	MME	OUTC	OMES						PSO	3
COS	1	2	3	4	5	6	7	8	9	10	11	12	:	1		2
CO1	1	-	-	2 3 2												

Unit:1 10 (Hours)

0

Water resources, Storage and characterization, Conditioning, Hard and Soft water, Requisites of Industrial Water and its uses. Methods of water Treatment such as Chemical Softening and Demineralization, Resins used for Water Softening and Reverse Osmosis. Effects of impure Boiler Feed Water.

Unit:2 10 (Hours)

Steam Boilers, Types of Steam Generator such as Solid Fuel Fired Boiler, Waste Gas Fired Boiler and Fluidized Bed Boiler, Steam Handling and distribution, Scaling and Trouble Shooting, Steam nozzles, Condensate utilization, Steam traps and Accessories, Flash tank analysis, Safety valves, Pressure reduction valves, Desuperheaters.

Unit:3 13 (Hours)

Air compressors, Classification of Compressor, Reciprocating Compressor, Single Stage and Two Stage Compressor, Velocity Diagram for Centrifugal Compressor, Slip Factor, Impeller Blade Shape, Vacuum pumps, Air receivers, Distribution systems, Different types of ejectors, Air dryers.

Unit: 4 12 (Hours)

Hazards and Safety: Classifications and assessment of various types of hazards, Risk assessment methods, General principles of industrial safety, Hazards due to fire, explosions, toxicity and radiations, Industrial hygiene, Maximum allowable concentration and threshold limit value, Protective and preventive measures in hazards control, Introduction to industrial safety regulations. Case studies of hazardous incidents in industries using HAZOP.

Teaching Mentod (s): Chalk & Board/PPT/Video Lectures

Text Books

CO2 CO3 CO4

- 1. Vasandhani, V. P., and Kumar, D. S, Heat Engineering, Metropolitan Book Co. Pvt. Ltd. (2009).
- 2. Crowl, D.A. and Louvar, J.F., Chemical Process Safety-Fundamentals with Applications, Prentice Hall, (2002).

- a. Lees, F.P., Prevention in Process Industries. Butterworth's (1996).
- b. Peavy, H. S., and Rowe, D. R, Environmental Engineering, McGraw Hill (1985).
- c. Banerjee, S., Industrial Hazards and Plant Safety, Taylor & Francis 2003).

Subje	ct code				•	Title (of the	subje	ct			L	T	P	
BCHI	PE5044			C	ORC	OSIO	N EN	GINE	ERIN	G		3	0	0	
							Cor	urse Ou	itcome						
							Pre-Re	equisite	s (If an	y)-					
						Co	urse Ed	ducatio	nal Obj	ective					
corrosion															
CEO2: T	EO2: TO solve problems involving various types of corrosion, corrosion resistant materials for a given application.														
CO1		Ex	plain a	bout	Types	of corr	osion a	vailable	in deta	ils.					
CO2		De	scribe	the v	arious	corrosi	on cont	rolled p	rocesse	S.					
CO3		Illu	istrate	the i	dea ab	out prev	vention	strategi	es proce	ess					
CO4		De	velop	a mio	crobial	influen	ced cor	rosion i	n terms	of case stu	dies.				
COs					PROC	GRAMI	ME OU	TCOM	IES					PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2		0		-	-	0	-	-	-	3			1	
CO2	1		2	2	-	-	2	-	-	-	-	-		2	
CO3	2		1		-	-	1	-	-	-	-	-		2	
CO4	1		0		1	-	0	-	-	-	-	_		1	

Unit:1 11 (Hours)

Corrosion – introduction, definitions and types, Electrochemical cells-definitions and Principles, Potential measurements – galvanic cells, concentration cells. EMF and Galvanic series – bimetallic couples. Eh-pH diagrams – fundamental aspects. Construction of Eh – pH diagrams. Fe- H₂O-O₂ diagram., Copper, Aluminum and general corrosion diagrams

Unit:2 10 (Hours)

Electrode – solution interface –definition and types of polarization. Exchange current density – polarization relationships., Polarization techniques – corrosion rate determination., Mixed potentials – concepts and Basics., Mixed potential theory – bimetallic couples, Mixed potential theory – activation and diffusion controlled processes

Unit:3 12 (Hours)

Prevention strategies – design and coatings, Prevention strategies – inhibitors and surface engineering. Cathodic protection – principles and classification. Cathodic protection – influencing factors and monitoring. Design aspects for cathodic protection. Stray current corrosion. Passivity – definitions and influencing parameters, Passivity – application of mixed potential theory, Passivity – design of corrosion resistant alloys. Anodic protection

Unit:4 12 (Hours)

Microbial influenced corrosion (MIC- definitions, environments and microbiology, MIC - Electrochemical aspects and general mechanisms. MIC - Bacterial transport, attachment and affected materials. MIC - Role of aerobic and anaerobic microorganisms Mechanisms and models for SRB corrosion. MIC and Biofilms. MIC - case studies and mechanisms

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures

Text Books

- 1. Denny A Jones, Principles and Prevention of Corrosion (second edition), Prentice-Hall, N. J.(1996).
- 2. M. G. Fontana, Corrosion Engineering (Third Edition) McGraw-Hill Book Company (NY) (1987).

- 1. H. H. Uhlig and R. W. Revie, Corrosion and Corrosion Control, Wiley (NY) (1985).
- 2. M.Pourbaix, Atlas of Electrochemical Equilibria in aqueous solutions, NACE, Houston (1974).

Subject Code	Course Title	L	T	P	C	QP									
BCHPC5110	Process control Lab														
	Pre -Requisite:														
Course Educational Objective															
To learn about dyna	mic behavior of nonlinear, distributed and other complex systems, as	nd des	ign th	eir co	ntrol s	schemes.									
Course Outcome: A	At the end of the course, the students will be able to														
CO1	Describe the stages involved in the development of a process mode	1.													
CO2	CO2 Create a chemical engineering problem as a mathematical model from basic engineering principles.														
CO3	Explain the appropriate numerical solutions to be used in solving the models														
CO4	Classify various simulation tools for solving the chemical engineer	ing mo	odels	devel	oped.										

- 1. To study the response of a single tank with step change in inlet flow and to find out time constant graphically.
- 2. To study the transient response of two interacting tanks with step change in inlet flow rate and to find out the time constant graphically.
- 3. To study the transient response of two non-interacting tanks with step change in inlet flow rate and to find out the time constant graphically.
- 4. To study the open loop response and the operation of ON-off electronic temperature controller and determination of its performance to control the temperature of a system having capacity to store thermal energy.
- 5. To study the open loop response and the operation of ON-OFF electronic pressure controller and determination of its performance to control the pressure of a pressure vessel.
- 6. To study of effect of PD, PI and PID controller on a temperature control trainer.
- 7. To study of effect of PD, PI and PID controller on a pressure control trainer.
- 8. To study the stability of a temperature control trainer.
- 9. To study the stability of a pressure control trainer.
- 10. To study Tuning of controller (Open loop method) of a temperature controller trainer.
- 11. To study Tuning of controller (Open loop method) of a pressure controller trainer.

Subject	code					C	ours	se Titl	le			L	T	P	C	QP
ВСНРО	C 5120				M	lass '	Tran	sfer-	II La	b						
							P	re -Re	quisite				•	•		
						Co	urse I	Educati	onal O	bjective						
CEO1:To	CEO1:To learn analytical experimental methods using sophisticate instruments an dinterpretation of Experimental data.															
Course Outcome: At the end of the course, the students will be able to																
CO1 Explain the Separation by adsorption																
СО	2	De	scribe	separa	ation b	y liqu	id-liq	uid Exti	raction	& leaching						
СО	3	De	sign th	ie equ	ipmen	ts for	separa	tion of	feed so	lution						
CO	4	De	velop	a equi	pment	for se	parati	on								
CO					PRO	GRAI	MME	OUTC	OMES]	PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12		1		2
CO1	CO1 2				-	-	-	-	-	-	3		- 2	2		
CO2	1	1	2	2	-	-	2	-	-	-	-	-		1		
CO3	2	2	1		-	-	-	-	-	-	-	-		1		
CO4	1	0	0 0									-	2	2		

- 1. Extraction of oil from a sample of mustard cake.
- 2. Study of drying characteristics of wet solids in a tray dryer under forced draft condition.
- 3. Drying of solids in a rotary dryer.
- 4. Adsorption isotherm & efficiency determination.
- 5. To study the performance of a Swenson-Walker crystallizer and to determine the crystal yield and the efficiency of crystallizer.
- 6. To determine that mass transfer coefficients for the given system using the experimental setup.

Subject	code	Course Title											L	T	P	C	QP
ВСНРО	25130		Ch	emi	cal R	leact	ion l	Engin	eerin	g-I	LAB						
		1					Pı	e -Req	uisite:					1	1		
Course Out	come: A	t the end	d of the	e cour	se, the	stude	nts wi	ll be ab	le to								
CO1 To calculate the rate constant for different reactors																	
CO2 To get knowledge about the order of the reaction																	
CO3	3	Desig	n the e	quipn	nents f	or sep	aratio	n of fee	d soluti	ion							
CO ²	1	Devel	lop a e	quipm	ent fo	r sepa	ration										
CO		I			PRO	GRAI	MME	OUTC	OMES	5					PS	SOs	
COs	1	2	3	4	5	6	7	8	9		10	11	12	1		2	
CO1	3	1	0	0	-	-	-	-	-		-	-	-	2)		
CO2	1	2	3	0	-	-	-		-		-	-	-	1			
CO3	1	2	3	0	-	-	-	-	-		-	-	ı	1		•	
CO4	0	3	0	1	-	-	-	-	-		-	-	-	2	2		

- 1. Interpretation of batch reactor data.
- 2. To study the kinetics of liquid phase irreversible reaction in a batch reactor.
- 3. To study the kinetics of liquid phase reversible reaction in batch reactor.
- 4. To perform the kinetic studies to establish the rate constant using CSTR.
- 5. To determine the rate constant for a reaction in a PFR
- 6. Saponification of Ethyl Acetate
- 7. To determine the pseudo first order rate constant. (TBC)

VI SEMESTER

	Course Category	Course Code	Course Title	L	T	P	Credits
			THEORY			1	
1	PC	BCHPC6010	Process Equipment and Design	3	1	0	4
2	PC	BCHPC6020	Chemical Reaction Engineering-II	3	0	0	3
3	PC	BCHPC6030	Fuel &Energy Technology	3	0	0	3
		BCHPE6041	Green Technology				
	22	BCHPE6042	Battery Technology				
4	PE	BCHPE6043 Fertilizer Technology		3	0	0	3
		BCHPE6044	Pinch Technology				
5	OE	B**OE605*	Open Elective-II	3	0	0	3
		PRAC	CTICAL / SESSIONAL			1	
6	PC	BCHPC6110	Process Equipment and Design Lab	0	0	2	1
7	PC	BCHPC6120	Chemical Reaction Engineering-II Lab	0	0	2	1
8	PC	BCHPC6130	Fuel &Energy Technology Lab	0	0	2	1
9	PC	BCHPC6140	Advanced Laboratory-I	0	0	2	1
10	EC	BTPEC6160	#Soft Skill and Employability Skill	0	0	2	1
		TOTAL		15	1	10	21

Subject Code	2				C	ours	se Titl	e			L	T	P	C	QP
BCHPC601	0			Proc	cess l	Equi	pmen	t Des	ign		3	0	0	3	
	•					C	ourse O	utcom	e						
						Pre-F	Requisit	es (If a	ny)-						
	Course Educational Objective														
CEO1: To learn about the design procedures of process equipment used in chemical process plants.															
	CEO2:To acquire basic understanding of design parameter, complete knowledge of design procedures for commonly used process equipment and their attachments														
CO1	Ide	ntify e	quipm	ent an	d proc	ess in	volved i	n proce	ess flow diag	rams.					
CO2	De	velop	a mod	el fron	n proc	ess uti	lizing f	low dia	grams.						
CO3	Exp	olain tl	ne diff	erent c	ontrol	strate	gies em	ployed	in the proce	ss from	the ins	trume	ntatio	n diagi	rams
CO4	Des	sign ar	nd drav	v fabri	cation	diagra	ams by	scaling							
COs				PRC	GRA	MME	OUTC	OMES]	PSOs	
1	2	3	4	5	6	7	8	9	10	11	12		1		2
CO1 2	1	0	1	-	-	-	-	-	-	2			2		
CO2 1	2	1	1	-	-	3		-	-	-	-		2		
	CO3 1 2 1 2 1														
CO4 1 Unit:1	0	0	-	-	-	-		-	-	-	-	1	2	1	0 (Hours)

Principles of process economics and cost estimation including depreciation and total annualized cost, cost indices, rate of

return, payback period, discounted cash flow, optimization in process design.

10 (Hours)

Distillation columns (Tray tower) – for binary mixtures along with tray hydraulics,

Absorbers (Packed Tower) – for counter current binary systems without reactions.

Unit:3 10 (Hours)

Heat exchangers – concentric tube, shell and tube types, Condenser. Evaporators – single and multi effects.

Unit:4 10 (Hours)

Design of pressure vessels and storage tanks, Isothermal reactors

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures

Text Books 1:. R. E. Treybal, Mass Transfer Operations.

2:. D. Q. Kern, Process Heat Transfer.

Ref. Books 1: J. H. Perry, Chemical Engineers Handbook.

2: Mc Cabe W. L. & Smith J. C. & Harriot P, Unit Operations of Chemical Engineering (5th Edition), Mc Graw Hill, New York

Subject code	Course Title	L	T	P	C	QP
BCHPC6020	Chemical Reaction Engineering-II	3	0	0	3	

Course Educational Objectives

- 1. The objective is to study the non-ideal behavior of heterogeneous reactors, gas-solid catalytic and non-catalytic reactors.
- 2.For solving problems involving heterogeneous reaction systems and to understand and apply the principles of non-ideal flow in the design of reactors

Course Outcome

Pre-Requisites (If any)-Mass Transfer-I, Heat Transfer, Chemical Process Calculations

the performance in porous heterogeneous catalysis CO4 Develop the rate-controlling model for heterogeneous non-catalytic reactions					
CO3	Estimate the effects of diffusion, mass and heat transfer in catalyst pellet on reaction rate and predict				
CO2	Develop rate laws for heterogeneous reactions.				
CO1	Explain various non-idealities in reactor behavior and distinguish between various RTD curves.				

COs					PRO	GRAI	MME	OUTC	OMES				P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1	0	0	-	-	-	-	-	-	-	-	2	
CO2	1	3	2	0	-	-	-	-	-	-	-	-	2	
CO3	2	1	3	0	-	-	-	-	-	-	-	-	1	
CO4	0	1	0	3	-	-	-	-	-	-	-	-	2	

Unit:1 Basics of Non-Ideal Flow

12 (Hours)

Non-ideal flow, Residence time distribution (Importance and interpretation of RTD curve, E, F and C curves and relationship between them in reactor), Statistical Interpretation, RTD measurement, Conversion in non-ideal flow reactors, Diagnosing reactor ills, Dispersion model, Tanks-in-series model

Unit:2 Heterogeneous Reactions and Solid Catalysis

11 (Hours)

Heterogeneous processes, Rate equations for heterogeneous reactions, adsorption isotherm and rates of adsorption, desorption and surface reaction, concept of rate controlling steps and analysis of rate equation. Classification and preparation of catalysts, Promoters and inhibitors, Catalyst characterization: Surface area and pore size distribution, Poisoning of catalysts

Unit:3 Solid Catalyzed Reactions

12 (Hours)

Characteristics of catalyzed reaction, Mechanism, Pore diffusion resistance combined with surface kinetics, Single cylindrical pore with first order reaction, Effectiveness factor, Porous catalyst particles, Heat effects during reaction, Performance equation for reactors containing porous catalyst particles, Experimental methods for finding rates, Deactivation of catalysts and mechanism - the rate and performance equations

Unit: Fluid--Particle Reactions

10 (Hours)

Selection of kinetic model, Shrinking core model for spherical particles of unchanging size: Diffusion through gas film controls, Diffusion through ash layer controls, Chemical reaction controls; Rate of reaction for shrinking spherical particles: Chemical reaction controls, Diffusion through gas film controls, SCM for cylindrical particles of unchanging size, determination of rate controlling step

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures

Text Books 1: Levenspiel O. Chemical Reaction Engineering, Wiley International

2: Smith J. M., Chemical Engineering Kinetics, Mc Graw Hill

Ref. Books 1: Fogler H. S., Chemical Kinetics and Reactor Calculation..

- 2: J.J. Carberry, Chemical and Catalytic Reaction Engineering, McGrawHill, I
- 3. K. A. Gavhane, Chemical Reaction Engineering II, 8th Ed., Nirali Prakashan, 2012
- 4. Froment G.F & K.B. Bischoff, "Chemical Reaction Analysis and Design", John Wiley and Sons, 1979

Subject	Code)				C	ours	e Title)			L	T	P	C	QP
ВСНР	C6030)	FU	JEL	ANI	EN.	ERG	Y TE	CHN	OLOGY						
								urse Oı								
]	Pre-R	equisite	s (If ar	ıy)-						
						Co	urse E	ducatio	nal Obj	ective						
										ergy resourcues for fuels.	es inclu	ding	solid,	liquio	d and g	gaseous
CO	1	Di	fferenti	ate so	lid, liq	uid and	d gase	ous fuel	S							
CO)2	A	pply th	e knov	vledge	of cha	racter	ization t	echniq	ues for fuels						
СО)3	De	velop t	he alte	ernate	energy	sourc	es								
CO)4	Ex	plain tl	ne mod	lern er	nergy c	onver	sion tec	hnologi	es						
CO					PRC)GRA	MME	OUTCO	OMES						PSO	3
COs	1	2	3	4	5	6	7	8	9	10	11	12	,	1		2
CO1	2	1 1 2									2					
CO2	2		2	-	-	3	-	-	-	-	-	-				1
CO3	1		1	-	-	2	2	-	-	-	-	-				2
CO4	1		2	-	-	0		-	-	-	-	-				1

Unit:1 10 (Hours)

Fuels: Solid Fuels: Coal - Origin, Chemical composition, calorific value, Classifications,

Characteristics & distribution of Indian coals, Storage and spontaneous combustion of coal, Coal washing and blending, Pertrographic constituents of coal, Carbonization of coal, manufacture and properties of metallurgical coke, recovery of byproducts.

Unit:2 10 (Hours)

Liquid Fuels: Origin and composition of crude oil, crude oil distillation and its products with special reference to gasoline, Kerosene and diesel oil, cracking and reforming, Coaltar distillation Products, Shale oil.

Unit:3 10 (Hours)

Gaseous Fuels: Natural gas, coal gas. Coke oven and blast furnace gas, Manufacture of Water gas and producer gas, Carburetted water gas. Synthetic Fuels: Hydrogenation of coal, fischer – Tropsch synthesis

Unit:4 10 (Hours)

Nuclear fuels and nuclear reactors, moderators and structural materials.

Combustion: Combustion of solids fuels, Pulverized coal. Calculation of volumes and weights of air necessary for combustion of fuels, gas analysis.

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures

Text Books 1:. Solid, Liquid and gaseous fuel - Brame and King.

2:. Elements of Fuels, Furnaces and Refractories, O. P. Gupta.

Ref. Books 1: Fuels and Combustion - S. Sarkar

2: Elements of Fuel Technology - Himus

Subjec	t cod	e					C	ourse	e Title	;			L	T	P	C	QP			
BCHP	E604	1			(GRE	EEN	TE	CHNO)LO(GY									
								Co	urse Ou	tcome										
							1	Pre-Re	equisite	s (If an	ıy)-									
							Cou	rse E	ducatio	nal Ob	jective									
CEO1:To	make	stude	ents	aware	of ho	w cher	nical p	roces	ses can l	oe desig	gned, develoj	ped and	oper	ated	in a su	ıstaina	ıble way.			
CEO2:- T	o facili	itate	the	growtl	n of th	e Gree	n Tecl	nnolog	y indus	try and	enhance its	contribu	tion	to the	natio	nal ec	conomy.			
CC)1		Uno	dersta	nd the	princi	ples of	green	chemis	try and	engineering									
CC)2		Des	sign pı	ocesso	es that	are be	nign a	nd envi	ronmen	tally viable									
CC)3								mples w		ganizations	used gre	en T	echno	ology	to imp	prove the			
CC)4		Lea	rn to 1	modify	proce	esses a	nd pro	ducts to	make	them green s	afe and	econ	omic	ally a	ccepta	ble.			
COs						PRO	GRAN	ИМЕ	OUTC	OMES						PSO	S			
COS	1	2	2	3	4	5	6	7	8	9	10	11	12	2	1		2			
CO1	2		1	0	-	-			-	-	-	-	-		2					
CO2	2		3						-	-	-	-	-				2			
CO3	2		3	3				1	-	-	-	-	-				2			
CO4	1		2			1			-	-	-	-	-				1			

Unit:1 10 (Hours)

An overview of green technologies, Applications of green technology, green Chemistry and green engineering, Principles of green Chemistry and engineering, Applications of green chemistry and engineering, Green chemistry metrics: Principles of yield and mass economy, E-factor, Reaction mass efficiency(RME), Examples of green chemistry metrics applied to organic synthesis.

Unit:2 10 (Hours)

Design of greener and safer chemicals, Solvent-free methods: Microwave, sono-chemistry. Green catalysts: ionic liquids, zeolites, photocatalyst, PEG, nanocatalyst, and biocatalyst. Green solvents: Supercritical fluids, fluorous phase, and green solvents from plants.

Unit:3 10 (Hours)

Life Cycle Assessment – Elements of LCA – Life Cycle Costing – Eco Labelling, Scale-up effect, reactors, separators, Process integration and Process intensification.

Unit:4 10 (Hours)

Availability and need of conventional energy resources, major environmental problems related to the conventional energy resources, future possibilities of energy need and availability. Non-conventional energy sources: Solar Energy-solar energy conversion technologies and devices, their principles, working and application, Definition-benefits and challenges – comparison of green fuels with conventional fossil fuels with reference to environmental, economical and social impacts-public policies and market-driven initiatives. Biomass energy: Concept of biomass energy utilization, types of biomass energy, conversion processes, Bio-conversion of renewable,

Teaching Method (s):Chalk & Board/PPT/Video Lectures /MOOC/ Internship/Industry Guest Lecture/Invited Guest Lecture Demonstration.

(can be chosen one or many)

Text Books

- 1. Handbook of Green Chemistry, Vol. 1 to 9 by P T Anastas, Wiley VCH.
- 2. Green Chemistry and Engineering: A Practical Design Approach by C J González and D J C Constable, Wiley.
- 3. Green Chemistry and Engineering: A Pathway to Sustainability by A E Marteel Parrish and M A Abraham. Wilev.
- 4. Pollution Prevention: Fundamentals and Practice' by Paul L Bishop (2000), McGraw Hill International.

- 1. Green Chemistry for Environmental Sustainability by S K Sharma and AMudhoo, CRC Press.
- 2. Handbook of Organic Waste Conversion' by Bewik M.W.M
- 3. Non-conventional Energy Sources' by Rai G.D.

Subject code	e	Course Title	L	Т	P		
ВСНРЕ6042	2	BATTERY TECHNOLOGY					
		Course Outcome	•	•	•	•	•
		Pre-Requisites (If any)-					
		Course Educational Objective					
CEO1:Define electrochemist	try and identify	and explain various aspects of battery cells, battery	ery syste	ms, and	battery		
manufacturing.							
CEO2:Explain how a battery	works, descri	be the basic principles of battery chemistry, and a	nalyze oz	xidation	, reducti	on, an	d
various losses.							
CO1	Explain about	Types of hattery available in details					

-

CO1	Explain about Types of battery available in details.
CO2	Describe the various battery manufacturing processes.
CO3	Illustrate the idea about fuel cell.
CO4	Apply the knowledge for recycle and reuse of battery.

COs					PRO	OGRA	MME	OUTCO	MES				P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	0		ı	-	-	-	-	-	3			2
CO2	1	1	2	2	-	-	2	-	-	-	-	-		1
CO3	2	2	1		-	-	-	-	-	-	-	-		2
CO4	1	0	0		-	-	-	-	-	-	-	-		1

Unit:1 10 (Hours)

General background on alternative energy sources and sustainability, Introduction to electric-based transportation, Introduction to battery, Dry Cell, Alkaline Battery, Li-ion batteries (main focus) ,Principle of operation ,Battery components and design ,Electrode, cell and battery fabrications ,Building block cells, battery modules and packs ,Li, polymer, batteries and applications ,All solid state batteries and future developments ,Li-S battery, future battery ,Li-Air battery, frontier battery.

Unit:2 10 (Hours)

Sodium-battery ,Magnesium battery ,Aluminum battery ,Silicon battery, Nickel Metal Hydride Battery :Advance Ni-MH batteries for transportation ,Future prospects of Ni-MH batteries vs. lithium ion batteries, Lead-acid battery Advance lead-acid batteries Horizontal plate Pb-Acid batteries for transportation Cylindrical Pb-Acid battery vs. flat plate system, High temperature batteries for back-up applications Zebra cell Li-iron sulfide cells Li-S cells Flow batteries for load leveling and large scale grid application Vanadium and iron based batteries Semi-fluid flow batteries Ni-Hydrogen batteries for space and marine applications Ni-H2 cells for space applications

Unit:3 10 (Hours)

Introduction to fuel cells PEM and alkaline fuel cells for transportation Solid oxide fuel cells Hydrogen storage systems Solid state hydrogen storage tanks Gas phase hydrogen storage tanks Cryogenic hydrogen storage tanks Liquid phase hydrogen storage tanks Fuel reformers Advanced fuel reformers

Unit:4 10hrs

Technology and economic aspects of battery recycling ,Battery Applications for Stationary and Secondary Use, Regulations and Safety Aspects of High Voltage Batteries ,Code and Standards Safe handling of Lithium Batteries ,Safety of high voltage devices

Teaching Mentod (s): Chalk & Board/PPT/Video Lectures (can be chosen one or many)

Text Books

1.G-A. Nazri and G. Pistoa, Lithium Batteries, Science and Technology, Kluwer Academic Publisher, 2003.

2.H. A. Kiehne, "Battery Technology Handbook," Marcel Dekker, NYC, 2003.

- 1. James Larminie and John Lowry, "Electric Vehicle Technology Explained," John Wiley, 2003.
- 2. D. Linden and T. S. Reddy, "Handbook of Batteries," 3rd Edition, McGraw-Hill, 2002.

S	Subject c	ode					Co	ourse	e Title	•			L	T	P	C	QP	
В	CHPE6	043			FE	RTII	LIZI	ER T	ECH	NOL	OGY							
								Cor	urse Oı	ıtcome	;							
							I	Pre-Re	equisite	s (If ar	ny)-							
							Cou	rse Eo	ducatio	nal Ob	jective							
CE	EO1: Able	to impi	rove kno	owled	ge ove	r a va	ried ra	inge of	f fertiliz	er prod	luction techi	niques, e	xposu	re to	Nitrog	genous	and	
Co	mplex fert	ilizer p	roducti	duction technologies. and the best available technology options with cost effective, minimal energy consumption along with														
										with co	st effective,	minima	l ener	gy coi	nsump	tion al	long with	
the	best appro	oaches	to safet	y and	enviro	nmen	tal ma	nagen	nent.									
	CO1		Desc	ribe th	ne utili	ty of c	liffere	nt ferti	ilizers.									
	CO2		Appl	y the l	knowle	edge o	f for p	roduc	tion of 1	new typ	es of micro	fertilize	rs for	crop j	produ	ction		
	CO3		Expla	ain ab	out the	vario	us typ	es of f	ertilizer	`S								
	CO4		Deve	lop th	e new	proce	ss of s	torage	technic	Įue.								
	COs					PRO	GRAN	ММЕ	OUTC	OMES)				F	SOs		
	COs	1	2	3	4	5	6	7	8	9	10	11	12		1		2	
	CO1	3	1	0	0	-	-	_	-	-	-	1					2	
	CO2	2	2	1	0	,		3	-	-	-	-	-				1	
	CO3	2	2	1	1	-	-	-	_	-	-	-	-	2				
	CO4	1	0	0	0	-	-	-	-	-	-	-	-				1	

Unit:1 10 (Hours)

Fertilizers: Chemical Fertilizers and Organic manures, Types of Chemical Fertilizers, Fertilizer applications and agronomic details Other Fertilizers: Secondary nutrients, micronutrients, Fluid fertilizers, controlled release fertilizers.

Unit:2 10 (Hours)

Nitrogenous Fertilizers: Feedstock for production of Ammonia Gas, Associated Gas, Coke Oven Gas, Naphtha, Fuel Oil, Petroleum Heavy Stock, Coal, Lignite, Coke, Water. Methods of production, characteristics, specification and storage of Ammonium sulphate, ammonium nitrate, urea, calcium ammonium nitrate and ammonium chloride.

Unit:3 10 (Hours)

Phosphatic Fertilizers: Raw materials - phosphate rock, sulphur, pyrites. Methods of production, characteristics, specification and storage of single super phosphate, triple super phosphate. Potassic Fertilizers: Methods of production, characteristics, specification and storage of potassium chloride, potassium sulphate and potassium nitrate.

Unit:4 10 (Hours)

Complex and NPK Fertilizers: Methods of production, characteristics specification and storage of ammonium phosphate sulphate, di-ammonium phosphate, nitro phosphates, urea ammonium phosphate, mono ammonium phosphate and various grades of NPK fertilizers.

Teaching Method (s): Chalk & Board/PPT/Video Lectures /MOOC/ Internship/Industry Guest Lecture/Invited Guest Lecture Demonstration.

Text Books

- 1. Handbook of fertilizer technology, Fertilizer Association of India, New Delhi
- 2. Fertilizer Industry An Introductory survey, M. G. Menon, Higginbothams (P) Ltd.

- 1. Shreve's Chemical Process Industries, 5th ed. by G T Austin, McGraw-Hill.
- 2. Unit process in organic systhesis: P.H. Groggins, MGH

Subject	t cod	e				C	ourse	e Title	:			L	T	P	C	QP							
BCHPI	E 604	4			PIN	CH '	TEC	HNO	LOG	Y		3	efficient use of raw rising in process systems PSOs										
							Co	urse Ou	tcome														
]	Pre-Ro	equisite	s (If an	ıy)-													
						Co	urse E	ducation	nal Obj	ective													
CEO1:To	learn p	rocess	integra	tion w	ith reg	ard to	energy	efficie	ncy, wa	aste minimiza	tion and	d an	effici	ent us	e of ra	.W							
materials.																							
CEO2;To	learn tl	ne moo	leling si	kills ne	ecessai	ry to d	escribe	and for	rmulate	optimization	n proble	ms a	rising	in pr	ocess	systems							
engineerin	g																						
CO	1	E	xplain a	bout t	he vari	ous di	sposal	and bio	logical	treatment pro	ocess												
CO	2	D	escribe	variou	s air a	nd wat	er trea	itment n	nethods														
CO	3	A	pply the	e know	ledge	in dev	elopin	g new d	igester	for treatment	proces	S											
СО	4	M	ake use	of va	rious c	hemic	al and	biologic	cal proc	cess for efflue	ent treat	men	t.										
		·						OUTC							PSO	s							
COs	1	2	3	4	5	6	7	8	9	10	11	12	2	1		2							
CO1	2	0	1								2					2							
CO2	2	1	2	1			3							1									
CO3	2	1	2	-	-	-	-	-	-	-	-	-				2							
CO4	1	0	0	-	-	-	-	-	-	-	-	-				1							

significance Heat exchanger network design Methodology of pinch analysis, range of pinch analysis technique, pinch study

Unit:2

10 (Hours)

Introduction: Pinch analysis, History and industrial experience, concept of process synthesis, role of thermodynamics in process design, Capital and energy costs Learning and applying the techniques Key concepts of pinch analysis, Heat recovery and heat exchange Basic concepts of heat exchange The temperature—enthalpy diagram. The pinch and its

Hazardous Waste Fundamentals, Definition, Classification, Generation, Regulatory process, Current Management Practices, Treatment and Disposal Methods, Physicochemical processes, Biological processes.

Unit:3 10 (Hours)

Targeting of Heat Exchanger Network (HEN): Energy targeting, area targeting, number of units targeting, shell targeting, cost targeting. Designing of HEN: Pinch design methods, Heuristic rules, and stream splitting. Design of maximum energy recovery (MER). Design of multiple utilities and pinches. Design for threshold problem, Loops and Paths.

Unit:4 10 (Hours)

Heat integration of equipments: Heat engine, heat pump, distillation column, reactor, evaporator, drier, refrigeration systems. Heat and power integration: Cogeneration, steam turbine, and gas turbine.

Teaching Method (s):Chalk & Board/PPT/Video Lectures /MOOC/ Internship/Industry Guest Lecture/Invited Guest Lecture Demonstration

Text Books

Unit:1

- 1. Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy, 2nd ed. by I C Kemp, Butterworth-Heinemann.
- 2. Chemical Process Design and Integration, 2nd ed. by R Smith, Wiley.

- 1. Heat Exchanger Network Synthesis: Process Optimization by Energy and Resource Analysis by U V Shenoy, Gulf Publishing.
- 2. Sustainable Design Through Process Integration: Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement by MMEl-Halwagi, Butterworth-Heinemann

Subjec	t cod	le					C	ours	e Titl	e			L	T	P	C	QP
BCHP	C611	.0			Proc	ess l	Equi	pme	nt and	l Desi	gn Lab		3	0		3	
								P	re -Req	uisite:				ı	1		
							Co	ourse E	Educatio	nal Ob	jective						
							Co	ourse E	Educatio	nal Ob	jective						
CEO1: To	learn	about	the	e desig	gn pro	cedure	s of pi	ocess	equipm	ent use	d in chemica	l process	s plan	its.			
				Cou	rse Ou	itcome	: At t	he end	of the	course,	the students	will be a	ible to	0			
CC)1		Ana	alyze	the me	thod t	o be a	dopted	to calc	ılate eq	uipment cos	st, and pr	ofital	oility	for pr	ocess.	
CC)2		Cla	ssify i	interna	l pres	sure ve	essels	and exte	rnal pr	essure vesse	ls					
CC)3		Des	sign o	f shell	& tub	e heat	excha	nger								
CC)4		Sol	ve cri	tical p	roblen	ns asso	ciated	with sie	eve tray	distillation	column					
CO						PRC)GRA	MME	OUTCO	OMES						PSOs	
COs	1	2		3	4	5	6	7	8	9	10	11	12		1		2
CO1	2		1	0	1				-	-	-	1			2		
CO2	1		2	1	1			3	-	-	-			2			
CO3	1		2	1	2	-	-	-	-	-	-	-	- 1				
CO4	1		0	0		-	-	-	-	-	-	_	-		2		

- 1. Design of Double pipe heat exchanger
- 2. Design of 1-2 shell and tube Heat Exchanger
- 3. Design of Single effect horizontal tube evaporator.
- 4. Design of Single effect vertical tube evaporator.
- 5. Design of Absorption Column (Packed tower).
- 6. Design of Continuous Distillation Column (Plate tower).
- 7. Design of Storage tank (fixed roof).

Subject code	Course Title	L	T	P	C	QP
BCHPC6120	CRE Lab II	3	0		3	
	Pre -Requisite:				I I	
	Course Educational Objective					
	Course Outcome: At the end of the course, the students will be	able	to			
CO1	To calculate the rate constant for reactors in series					
CO2	To get knowledge about the mass transfer constant for physical and	chen	nical o	lissolu	ıtion.	
CO3	To know about RTD calculation for reactors					
CO4	Solve critical problems associated with reactor.					

- 1. To determine the rate constant of the reaction of ethyl acetate and sodium hydroxide in a combined reactor of CSTR followed by PFR.
- 2. Solid Liquid System -To calculate the mass-transfer coefficient (KSL) for physical and chemical dissolution and to calculate the enhancement factor for solid-liquid systems
- 3. Liquid Liquid system- To calculate the mass-transfer coefficient for physical and chemical dissolution and to calculate the enhancement factor for liquid-liquid systems
- 4. RTD in Non Ideal Reactor (CSTR)- To study residence time distribution (RTD) in a CSTR and to find out peclet No
- 5. RTD in Plug Flow Reactor- To study residence time distribution (RTD) in a plug flow reactor
- 6. Temperature Dependency of Reaction Rate- To estimate nature of temperature dependency of rate constant of ethyl acetate with NaOH in dilute aqueous solution
- 7. Industrial Reactors- To study the different types of industrial reactors (Packed Bed and Fluidized bed reactors

Subjec	t cod	le					C	ours	e Title	e			L	T	P	C	QP				
ВСНР	C613	0			Fu	iel &	Ene	rgy]	Гесhn	ology	Lab										
								P	re -Req	uisite:					•	•					
							Co	urse E	ducatio	nal Ob	jective										
CEO1:To application		abou	t typ	es o	f fuel	s and	their	charac	teristics	s, and	combustion	systems	witl	n emp	ohasis	on e	ngineering				
			Course Outcome: At the end of the course, the students will be able to																		
CO	1		Diffe	erenti	iate sc	olid, lio	quid aı	nd gas	eous fu	els											
CO)2		Appl	y the	e knov	vledge	of cha	aractei	rization	technic	ques for fuels	8									
CO)3		Deve	elop t	the alt	ernate	energ	y sour	ces												
CO)4		Expla	ain tl	he mo	dern e	nergy	conve	rsion te	chnolo	gies										
CO						PRO	GRAN	MME	OUTC	OMES	}					PSO	S				
COs	1	2		3	4	5	6	7	8	9	10	11	12		1		2				
CO1	2			1			1	-	-	-	-	-	-				2				
CO2	2			2			3	-	-	-	-	-	-		1						
CO3	1			1			2	2	-	-	-	-	-				2				
CO4	1			2			0		_	-	-	-	-				1				

- 1. Determination of moisture content, volatile matter, carbon, and ash by Proximate Analysis method.
 - 2. Determination of Cloud & Pour Point of an oil sample.
 - 3. Determination of Flash &Fire Point of an oil sample.
 - 4. Determination of Moisture Content of an oil sample by Dean & Stark Apparatus.
 - 5. Determination of Carbon Residue of an oil sample by Conradson's Apparatus.
 - 6. Determination of Aniline Point of an oil sample.
 - 7. Determination of Viscosity of an oil sample by open cup apparatus.
 - 8. Determination of Viscosity of an oil sample by closed cup apparatus.
 - 9. Determination of Calorific Value of a fuel sample by Bomb Calorimeter.
 - 10. Determination of washability characteristics of the supplied sample of Coal using Float and Sink test.

Su	bject C	ode					Co	ours	eTitle	;			L	T	P	C	QP
BO	СНРС6	140				1	Adva	ance	d lab	– I			3	0		3	
							Cou	ırse E	ducatio	nal Ob	jective					ı	
	O1:To lear		ticle m	echani	ics						the students				ansfe	r ,reac	tion
	CO1			ain the		rent ty	pes of	f pollu	ition an	d apply	y knowledg	e for the	prote	ction	and in	nprove	ement of
	CO2		Make	use o	of suita	able w	astew	ater tr	eatmen	t techn	ique						
	CO3		Ident	ify sui	table	sampl	ing, a	nalysi	s and ed	quipme	ent for air po	ollutants					
	CO4		Appl	y their	know	ledge	in co	ntrolli	ng the p	pollutio	on in proces	s industi	ries				
	GO.					PRO	GRAN	MME	OUTC	OME	$\overline{\mathbf{S}}$				PS	SOs	
	COs	1	2	3	4	5	6	7	8	9	10	11	12]	1	2	2
	CO1	0	•	0	-	-	1	1	-	-	-	-	-	2	2		
	CO2	3		0	-	-	2	2	-	-	-	2					
	CO3	3		0	-	-	- 2 2 1										
	CO4	0		1	_	_	3	3			-			2	2		

- 1. Hydrodynamic studies of inverse fluidized bed.
- 2. Hydrodynamic study of single stage and multistage fluidized bed.
- 3. Hydrodynamic study of single and multistage semi fluidized bed.
- 4. Determination of chemical oxygen demand (COD) of the waste water sample.
- 5. Determination of Biochemical oxygen demand (BOD) of the waste water sample.
- 6. Determination of Viscosity co-efficient of a given liquid using Ostwald's Viscometer.
- 7. Determination of surface tension unknown liquids using stalgamometer.
- 8. Determination of turbidity of given water sample.
- 9. Determination of distribution co-efficient between water and carbon tetrachloride.
- 10. Analysis of arsenic content in water.
- 11. Determination of percentage of MnO₂ in phyrolusite.
- 12. Potentiometric estimation of FAS using standard K₂Cr₂O₇ solution.
- 13. Flame Photometric estimation of Sodium and Potassium in the given sample of Water.
- 14. Colorimetric estimation of Copper in a given solution.
- 15. Study and operation of a magnetic separator and thereby finding its efficiency of separation.

VII SEMESTER

Sl. No.	Course Category	Course Code	Course Title	L	T	P	Credits
			THEORY				
1	PC	BCHPC7010	Transport Phenomenon	3	0	0	3
		BCHPE7021	Fluidization Engineering				
2	DE	BCHPE7022	Petroleum Refinery Engineering			0	2
2	PE	BCHPE7023	Mineral Process Engineering	3	0	0	3
		BCHPE7024	Renewable Energy				
		BCHPE7031					
2	DE	BCHPE7032	Interfacial Engineering			0	2
3	PE	ВСНРЕ7033	Sustainability Engineering	3	0	0	3
		BCHPE7034	Polymer Technology				
	BCHPE7041 Treatment of	Treatment of Industrial effluent					
		BCHPE7042	Pollution and its control				
4	PE	BCHPE7043	Modern Separation Technique	3	0	0	3
		D.CHIDEZO44	Integrated Solid Waste				
		BCHPE7044	Management				
5	OE	B**OE705*	Open Elective-III (Any One)	3	0	0	3
		PRA	CTICAL / SESSIONAL				
6	PC	BCHPC7140	Advanced Laboratory-II	0	0	4	2
7	EC	BCHPC7150	Mini Project / Projects on Internet of Things	0	0	4	2
8	EC	BCHPC7170	^Summer Internship-II	0	0	2	1
i		15	0	10	20		

Subject	code	e					Co	ourse	Title	!			L	T	P	C	QP
ВСНРО	C 701	0			T	RAN	SPO	RT I	PHEN	OME	ENA		3	0	0	3	
								Cor	urse Ou	tcome							
]	Pre-Re	equisite	s (If an	y)-						
							Co	urse E	ducation	nal Obje	ective						
CEO1: To	Under	Understand the fundamental connections between the conservation laws in heat, mass, and momentum.															
CEO2: To	: To develop sound physical understanding of flows.																
CEO3: To familiarize various aspects of velocity, temperature and concentration distribution in laminar and turbulent flow.														ent flow.			
CO	1		Un	dersta	nding	of tran	sport p	process	ses.								
CO	2		Ab	ility to	o do he	at, ma	ss and	mome	entum tr	ansfer a	analysis.						
CO	3		Ab	ility to	o analy	ze ind	ustrial	proble	ems alor	ng with	appropriate l	ooundar	у со	nditio	ns.		
CO	4		Abi	lity to	devel	op stea	dy and	d time	depende	ent solu	tions along v	vith the	r lin	nitatio	ns.		
COs						PRO	GRA	MME	OUTC	OMES						PSO	S
COs	1	2		3	4	5	6	7	8	9	10	11	12	2	1		2
CO1	2		1	0		-	-	-	-	-	-	-	-		2		
CO2	2		3			-	-	-	-	-	-	-	-		2		
CO3	2		2	3	-	-	-	1	-	-	_	-	-		1		
CO4	1		2	-	-	1	-	-	-	-	-	-	_		2		

Unit:2 12 (Hours)

Momentum Transport: Viscosity and the mechanism of momentum transport, Shell momentum balances and pressure and velocity distributions in falling film, circular tube, annulus, slit, Flow of Two Adjacent Immiscible Fluids- Creeping Flow around a Sphere. Equation of continuity, motion, mechanical energy, use of equations of change to solve flow problems,

Energy transport: Thermal conductivity, temperature and pressure effect on thermal conductivity of gases and liquids, Fourier's law, mechanism of energy transport, shell energy balance, temperature distribution in solids and laminar flow with electrical, nuclear, viscous, chemical heat source, heat conduction through composite walls, cylinders, spheres, fins, slits. Energy equations, use of equations of change,

Unit:3 11 (Hours)

Mass Transport: Diffusivity, temperature and pressure effect, Fick's law of diffusion, mechanism of mass transport, theory of diffusion in gases and liquids, shell mass balances, concentration distribution in solids and in laminar flow: stagnant gas film, heterogeneous and homogeneous chemical reaction systems, falling film, porous catalyst. The equation of continuity, summary of equations of change and fluxes, use of equations of change,

Unit:4 10 (Hours)

Dimensional analysis of equations of change, comparison of laminar and turbulent flows, time-smoothed equation of change, empirical expressions, Inter phase transport in isothermal systems, temperature distribution for turbulent flow in tubes, jets, empirical expressions for turbulent mass flux.

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures

Text Books

Unit:1

- 1.Transport Phenomena, 2nd ed. by R B Bird, W E Stewart, and E N Lightfoot, John Wiley & Sons.
- 2. Analysis of Transport Phenomena, William M. Deen, Oxford University Press

Ref. Books

- 1. Introduction to Transport Phenomena: Momentum, Heat, and Mass by B Raj, PHI.
- 2. Slattery, J. S., "Advanced Transport Phenomena", Cambridge University Press, London, 1999.

11 (Hours)

Subject	code					C		L	T	P	C	QP				
BCHPE	7021]	FLU:	IDIS	ATO	ION	ENG	INE	ERING						
		•					Co	urse O	ıtcome							
						J	Pre-R	equisite	s (If ar	ny)-						
						Co	urse E	ducatio	nal Obj	ective						
CEO1: To 1	: To be Acquainted with the fundamentals of fluidization engineering, different regimes, classification of particles.															icles.
CEO2: To e	enable t	hable the students to learn the design aspects of fluidized beds.														
CO1 Explain the basic of fluidization.																
CO	2	Des	cribe t	the var	ious ir	ndustri	al appl	lication	of fluid	lization.						
CO	3	Exp	lain th	ne vario	ous flu	idizati	on reg	ime, Cl	assifica	tion of partic	cles.					
CO	4	Des	cribe t	the sta	ging of	f fluidi	zed be	ed reacte	or.							
COs					PRC)GRA	MME	OUTCO	OMES						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12		1		2
CO1	1	2	3	-	-	-	-	-	-	-	-	-		2		
CO2	2	1	2	-	-	-	-	-	-	-	-	-		2		
CO3	1	2	2	-	-	-	-	-	-	-	-	-		1		
CO4	CO4 1 3 0 2															

The Phenomenon of Fluidization, Liquidlike Behavior of a Fludized Bed, Advantages and Disadvatages of Fluidized Beds for Industrial Operations, Fluidization Quality, Industrial Applications of Fluidized Beds: Coal Gasification, Gasoline from Other Petroleum Fractions, Gasoline from Natural and Synthesis Gases, Synthesis Reactions, Metallurgical and Other Processes.

Unit:2 12 (Hours)

Cracking of Hydrocarbons: (FCC), Fluid Coking and Flexi-Coking, Thermal Cracking

Combustion and Incineration: Fluidized Combustion of Coal, Incineration of solid Waste

Carbonization and Gasification: Gasification of Coal and Coke, Activation of Carbon, Gasification of Solid Waste,

Reactions Involving Solids: Roasting Sulfide Ores, Silicon for the Semiconductor and Solar Cell Industries, Chlorination and Fluorination of Metal Oxides, Reduction of Iron Oxide, Biofluidization

Unit:3 13 (Hours)

Fixed Beds of Particles: Characterization of Particles, Fixed Beds-One Size of Particles, Fixed Beds-Solids with a Distribution of sizes, Fluidization withour Carryover of Particles: Minimum Fluidizing Velocity, pressure Drop-versus-Velocity Diagram, Effect of Pressure and Temperature on Fluidized Behaviour, Sintering and Agglomeration of Particles at High Temperature, The Geldart Classification of Particles

Unit:4 10 (Hours)

Distributor Types: Ideal Distributors, Perforated or Multiorifice Plates, Tuyeres and Caps, Pipe Grids and Spargers, Pressure Drop Requirements across Distributors Estimation of Bed Properties: Gas Flow in the Emulsion phase, Bubble Gas flow, Bubble Size and Bubbles Growth, Bubble Rise Velocity, Beds with Internals.

Teaching Method (s):Chalk & Board/PPT/Video Lectures

Tata

Text Books 1: Fluidization Engineering: Daizo Kunii and Octave Levenspiel

2: Introduction to Chemical Engg. Thermodynamics by Smith and H.C. Vannes and M. Abbot (7th editation) McGraw Hill, 2009

Ref. Books 1: Shreve's Chemical Process Industries, 5th ed. by G T Austin, McGraw-Hill.

2: Unit process in organic systhesis: P.H. Groggins, MGH

S	Subject (code					Co	ourse	Title	;			L	T	P	C	QP
I	BCHPE'	7022	P	ETR	OLI	EUM	I RE	FIN	ERY :	ENG	INEERIN	IG	3	0	0	3	
								Cou	ırse Oı	ıtcom	e						
							Pı	e-Re	quisite	s (If a	ny)-						
							Cour	se Ed	ucatio	nal O	bjective						
C	EO1: To	learn t	he test	ing of	f petro	oleum	prod	ucts,	crude p	rocess	sing and trea	tment	techi	nique	es		
C	EO2: To	familia	arize students with the application of chemical engineering principles to petroleum refining.														
CO1 Describe the petroleum industry scenario worldwide.																	
	CO2		Exp	lain tl	ne dif	ferent	refin	ing pı	rocesse	s.							
	CO3		Dev	elop l	knowl	edge	of saf	ety a	nd poll	ution o	control in th	e refin	ing iı	ıdust	ries.		
	CO4		Illus	strate	the su	itable	refin	ing te	echnolo	gy for	maximizin	g the g	asoli	ne yi	eld.		
	COs				P	ROG	GRAN	ИМЕ	OUTO	COME	ES				I	PSOs	
	COs	1	2	3	4	5	6	7	8	9	10	11	12		1		2
	CO1	2		1	-	-	1		-	-	-	-	-		2		
	CO2	2		2	-	-	3		-	-	-	-	-		1		
	CO3	1		1	-	-	2	2	-	-	-	-	-		1		
CO4 1				2	-	-	0			-	-	-	-		2		

Origin and formation of petroleum, Reserves and deposits of the world. Indian petroleum Industry, composition of petroleum. Evaluation of Petroleum, Thermal properties of petroleum fraction, Important products-Properties and Test methods

Unit:2 10 (Hours)

Crude pretreatment, dehydration and desalting, Pipe still heater, atmospheric and vacuum distillation of crude oil. Important products – properties and test methods: natural gas, Associated gas, Dissolved gas, Refinery off gas, LPG, Reid vapour pressure, ASTM distillation, Octane number and Cetane number.

Unit:3 10 (Hours)

Treatment of products, additives, blending of gasoline. Treatment of gasoline, kerosene, lubes and lubricating oils, waxes.

Unit:4 10 (Hours)

Thermal and catalytic cracking, Hydro cracking and hydro treating. Coking, Visbreaking, Alkylation, Isomerization, Asphalt and air blown asphalt.

Teaching Method (s): Chalk & Board/PPT/Video Lectures /MOOC/ Internship.

Text Books 1:Nelson, Petroleum Refinery Engineering, Mc Graw Hill Book.

2:. Rao, B. K. B., Modern Petroleum Refining Processes, Oxford and IBH.

Ref. Books 1: Cox, P.A., "The Elements on Earth", Oxford University Press, Oxford 1995

Subject code	Course Title	L	T	P	C	QP
BCHPE7023	MINERAL PROCESS ENGINEERING	3	0	0	3	

Course Outcome

Pre-Requisites (If any)-

Course Educational Objective

CEO1: To introduce the theoretical aspects of common mineral processing techniques and the associated equipment utilized now-a-days in mining and extractive metallurgy practices.

CEO2: To introduce students to the principles of ore comminution, liberation and particle size analysis.

CO1	Apply the knowledge of various thermal methods of mineral processing.
CO2	Classify the different mineral processing methods.
CO3	Make use of knowledge in real time practice.
CO4	Assess the separation method in hydrometallurgy

COs					PRO	GRA	MME	OUTC	OMES	5			P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	-	-	-	-	-	-	-	-	-	-		2
CO2	3	2	-	-	-	-	-	-	-	-	-	-		1
CO3	3	2	-	-	-	-	-	-	-	-	-	-		2
CO4	3	2	_	-	-	-	-	-	-	-	-	-		1

Unit:1 12hrs

Introduction of ores and minerals; characterization of particulate materials, estimation of particle size by different methods, representation of size analysis, size reduction equipment, work index determination, mineral separation including gravity separation, jigging, spiralling, shaking table concentration etc., electrical and magnetic methods of separation, froth flotation chemistry, froth flotation unit operation, flotation equipment and flotation technology; fine particles processing, separation efficiency versus fine particles fine particles processing techniques

Unit:2

Thermal methods in processing of Ores, Roasting, Sintering, Calcination, Pelletisation and briquetting. Chemical and electrochemical methods in mineral processing, Leaching, leaching process variables, Dump and heap leaching, Acid Leaching, Bacteria leaching.

Unit:3

Solid-liquid separation in hydrometallurgy, solution purification, Amalgamation and cyanidation. Uranium processing

Unit:4

Tailings treatment and effluent processing, tailings pond management and environmental concerns; case studies including sulphide minerals flotation.

Teaching Method (s):Chalk & Board/PPT/Video Lectures

Text Books 1: Mineral Beneficiation: A Concise Basic Course, D.V. Subba Rao, Pub.: CRC Press, 2011 2:Introduction to Mineral Processing, E.G. Kelly and D.J. Spottiswood, Pub.: Wiley, 1982.

Ref. Books 1: Coulson & Richabol Vol-2 Chemical Engineering pergammmic Press.

S	ubject	code		Course Title I												C	QP	
В	CHPE	7024				REN	EW	ABI	LE EN	ERG	Ϋ́		3	0	0	3		
	Course Outcome																	
	Pre-Requisites (If any)-																	
	CO1 To develop fundamental understanding about Solar Thermal and Solar Pho												otovol	otovoltaic systems.				
To provide knowledge about development of Wind Power plant and various oper performance parameter/characteristics.												eration	nal as v	well as				
	CO3		То є	To explain the contribution of Biomass Energy System in power generation.														
	CO4		To t	To teach different Storage systems, Integration and Economics of Renewable Energy														
	COs			PROGRAMME OUTCOMES												PSOs		
	COS	1	2	3	4	5	6	7	8	9	10	11	12		1		2	
CO1 - - 0 - - 2 3 - - - - -										2								
	CO2	-	-	0	-	-	3	2	-	-	-	-	-				2	
	CO3	-	-	1	-	-	3	2	-	-	-	-	-				1	
	CO4	-	-	0	-	-	3	1	-	-	-	-	-				1	

Solar energy: Solar radiation at the earth's surface, solar radiation measurements, estimation of average solar radiation, solar thermal flat plate collectors, concentrating collectors, solar thermal applications, heating, cooling, desalination, drying, cooking, etc, solar thermal electric power plant, principle of photovoltaic conversion of solar energy, types of solar cells, Photovoltaic applications: battery charger, domestic lighting, street lighting, water pumping etc, solar PV power plant, Net metering concept.

Unit:2 10 (Hours)

Wind energy: Nature of the wind, power in the wind, factors influencing wind, wind data and energy estimation, wind speed monitoring, wind resource assessment, Betz limit, site selection, wind energy conversion devices, classification, characteristics, applications, offshore wind energy, Hybrid systems, safety and environmental aspects, wind energy potential and installation in India, Repowering concept.

Unit:3 10 (Hours)

Bio-energy: Biomass resources and their classification, Biomass conversion processes, Thermo chemical conversion, direct combustion, biomass gasification, pyrolysis and liquefaction, biochemical conversion, anaerobic digestion, types of biogas Plants, applications - alcohol production from biomass – bio diesel production, Urban waste to energy conversion, Biomass energy programme in India

Unit:4 10 (Hours)

Other types of energy: Ocean energy resources, principle of ocean thermal energy conversion (OTEC), ocean thermal power plants, ocean wave energy conversion, tidal energy conversion, small hydro-geothermal energy, geothermal power plants, hydrogen production and storage, Fuel cell – principle of working, various types, construction and applications., mono ammonium phosphate and various grades of NPK fertilizers.

Teaching Method (s):Chalk & Board/PPT/Video Lectures /MOOC/ Internship/Industry Guest Lecture/Invited Guest Lecture Demonstration.

(can be chosen one or many)

Text Books

1. Sukhatme, S.P., Solar Energy, Tata McGraw Hill, 1984.

2. Twidell, J.W. and Weir, A., Renewable Energy Sources, EFN Spon Ltd., 1986.

Ref. Books

1. Kishore VVN, Renewable Energy Engineering and Technology, Teri Press, New Delhi, 2012

2. Peter Gevorkian, Sustainable Energy Systems Engineering, McGraw Hill, 2007

3. Kreith, F and Kreider, J. F., Principles of Solar Engineering, McGraw-Hill, 1978.

Subjec	t cod	e				C	ourse	e Title	•			L	T	P	C	QP
BCHPC	C 703	1 PI	ROC	ESS	MO	DEL	LIN	G AN	D SI	MULATI	ON	3	0	0	3	
		'						urse Ot			•					
						I	Pre-Re	equisite	s (If an	y)-						
Course Educational Objective																
CEO1: Learn to develop mathematical models of phenomena involved in various chemical engineering processes and solutions for these models.														es and		
CEO2:To provide training to solve the model equations using numerical techniques																
CO	1	De	scribe	the sta	iges in	volve	d in the	e develo	pment	of a process	model.					
CO)2	Cr	eate a	chemi	cal en	gineer	ing pro	oblem a	s a mat	hematical mo	odel fro	m ba	ısic eı	nginee	ering p	orinciples.
CO)3	Ex	plain t	ne app	ropria	te nun	nerical	solutio	ns to be	used in solv	ing the	mod	lels			
CO)4	Cla	ssify	arious	s simu	lation	tools f	for solvi	ng the	chemical eng	ineerin	g mo	dels	devel	oped.	
COs					PRO	GRAI	ММЕ	OUTC	OMES						PSO	S
	1	2	3	4	5	6	7	8	9	10	11	12	2	1		2
CO1	2	1	0	-	-	-	-	-	-	-	-			2		
CO2	2	2	2	-	-	-	-	-	-	-	-	_		2		
CO3	1	2	3 1													

Modeling: Fundamentals of mathematical models and formulation – Continuity equation, Equation of motion, Transport equations, Energy equation, Equations of state, Equilibrium, Chemical kinetics and their applications; Population balance models and applications; Empirical models; Model parameters estimation. Lumped and distributed parameter models.

Unit:2 10 (Hours)

Fluid systems, C.S.T.R. (single, series, isothermal, constant hold up, variable hold up, gas phase pressurized and non-isothermal), Single component vaporizer, Multi-component flash drum, Batch reactor, Reactor with mass transfer, Ideal binary distillation column, Batch distillation, Heat exchanger, etc.

Unit:3 10 (Hours)

Optimization: Single variable optimization (analytical, dichotomous search, Fibonacci, golden section, regulafalsi), Multivariable optimization (analytical, geometric programming, linear programming), Convergence methods (Newton's methods, direct substitution, Wegstein's method).

Unit:4 12 (Hours)

Simulation: Techniques of digital simulation – Information flow, from process to information flow diagram, From information flow diagram to numerical form, Recycles, Calculation of a recycle set, etc. Dynamic simulation - Batch reactor, Gravity flow tank, Three CSTR in series, Non-isothermal CSTR; Binary distillation column, Multi-component distillation column, Variable pressure distillation column, Ternary batch distillation with holdup.

Teaching Method (s): Chalk & Board/PPT/Video Lectures /MOOC/ Internship/Industry Guest Lecture/Invited Guest Lecture Demonstration.

Text Books 1:.Process Modeling, Simulation, and Control for Chemical Engineers, 2nd ed. by W L Luyben, McGraw-Hill.

2:. Process Plant Simulation, B V Babu, Oxford University Press

Ref. Books 1: Engineering Optimization: Theory and Practice by S S Rao, New Age.

2: . Process Control: Modeling, Design and Simulation, 1st ed. by B W Bequette, PHI.

CO4

Subject Code	Course Title	L	T	P	C	QP
BCHPE7032	INTERFACIAL ENGINEERING	3	0	0	3	A

Pre -Requisite: Knowledge of chemical engineering, particularly thermodynamics, fluid mechanics, mass transfer and reaction engineering

Course Educational Objectives

CEO1: To Develop an understanding of the role that interfaces play in determining the properties of materials.

CEO2: To Identify the intermolecular and surface forces acting in various colloidal suspensions and nanoscale systems and be able to develop quantitative estimates of the strength and magnitude of these forces

CEO3: To understand the phenomena occur in the colloids and the importance of colloids and role of interfacial engineering and study near the interface processes.

CEO4: Role of colloids in industry is also covered like drug delivery, paints and textile etc

	Course Outcomes: At the end of the course, the student will be able to:												
CO1	Study Cause of formation of self-assembled structures such as micelles of various sizes and shapes, bilayers and vesicles, and link it to 2 and 3 component surfactant phase diagrams.												
CO2	Understand the origin of van der Waals attraction between molecules, and the factors that make it strong/weak												
CO3	Analyze the Balance of repulsion between charged surfaces due to osmotic pressure buildup and van der Waals attraction between bodies decides kinetic stability of dispersed phase systems using DLVO theory												
CO4	identify how interparticle and surface forces could be playing a role in a new system, isolate them by reasoning and additional experiments, and make progress towards engineering desired control on it.												

COs					PRO	GRA	MME	OUTC	OMES				P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	1	-	1	-	-	-	-	-	-	-	2	
CO2	1	1	2	-	2	-	-	-	-	-	-	-	2	
CO3	1	2	2	-	1	-	-	-	-	-	-	-	1	
CO4	1	1	0	-	1	-	-	-	-	-	-	-	2	

UNIT:1 (10 Hours)

Introduction to colloidal material, surface properties, origin of charge on colloidal particles, preparation & characterization of colloidal particles.

Surfactants type (Anionic, cationic, Zwitterionic, Gemini and non-ionic). Theory of surfactants. CMC. Kraft temperature. Phase behavior of cone surfactant systems, surfactant geometry, bilayers, vesicles and liquid crystals, and packing. Emulsions, Microemulsions & Gels

UNIT:2 (10 Hours

Intermolecular Forces, Van-der-waals forces (Kessom, Debye, and London Interactions). Potential energy curve, Brownian motion and Brownian Flocculation.

Surface and interfacial Tension. Surface free energy, Surface tension for curved interfaces, Surface excess and Gibbs adsorption isotherm. Measurement of Surface tension, Interfacial Tension, Contact angle. Wetting Young-Laplace equation, and Dynamic properties of interfaces. Surface viscosity, Kelvin equation.

UNIT:3 (10 Hours)

Electrical phenomena at interfaces (Electronic kinetic phenomena, Electric double layer, short range forces). DLVO theory, capillary hydrostatics. Zeta potential, Electro osmosis phenomena, Streaming potential, Electro viscous flows.

UNIT:4 (10 Hours)

Thermodynamics of interfaces, thermodynamics of micelle and mixed micellar formation. Applications in detergents, personal-care products, pharmaceuticals, nanotechnology and food, textile, paint and petroleum industries. \

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books:

- 1. Adamson, A. W. and Gast, A. P., Physical Chemistry of Surfaces, John Wiley, New York, 1997.
- 2. Ghosh, P., Colloid and Interface Science, PHI Learning Pvt. Ltd., New Delhi, 2009.

- 3. Hiemenz, P. C. and Rajagopalan, R., Principles of Colloid and Surface Chemistry, Marcel Dekker, New York, 1997
- 4. Stokes, R. J. and Evans, D. F., Fundamentals of Interfacial Engineering, Wiley-VCH, New York, 1997.

Reference Books:

- 1. Baszkin, A. and Norde, W., Physical Chemistry of Biological Interfaces, Marcel Dekker, New York, 2000.
- 2. Edwards, D. A., Brenner, H. and Wasan, D. T., Interfacial Transport Processes and Rheology, Butterworth-Heinemann, Boston, 1990.
- 3. Hunter, R. J., Foundations of Colloid Science, Oxford University Press, New York, 2005.
- 4. Israelachvili, J., Intermolecular and Surface Forces, Academic Press, London, 1992.
- 5. Slattery, J. C., Interfacial Transport Phenomena, Springer-Verlag, New York, 1990.

Subject Code	Course Title	L	T	P	С	QP
BCHPE7033	SUSTAINABILITY ENGINEERING	3	0	0	3	A

Pre -Requisite:

Course Educational Objectives

CEO1: To develop an increased awareness among students on issues in areas of sustainability

CEO2: To make students understand the role of engineering and technology within sustainable development;

CEO3: To know the methods, tools, and incentives for sustainable product-service system development

CEO4: To establish a clear understanding of the role and impact of various aspects of engineering and engineering decisions on environmental, societal, and economic problems.

	Course Outcomes: At the end of the course, the student will be able to:
CO1	have knowledge about the concept and importance of sustainability
CO2	understand different types of pollution and waste generation, their causes, effects and control
CO3	understand environmental management standards and environmental impact assessment
CO4	understand the concepts of biomimicking, green engineering, green building, sustainable habitat, sustainable urbanization

UNIT:1 (10 Hours)

Sustainability - Introduction, Need and concept of sustainability, Social- environmental and economic sustainability concepts. Sustainable development, Nexus between Technology and Sustainable development, Challenges for Sustainable Development. Multilateral environmental agreements and Protocols - Clean Development Mechanism (CDM), Environmental legislations in India - Water Act, Air Act.

UNIT:2 (10 Hours)

Air Pollution, Effects of Air Pollution; Water pollution- sources, Sustainable wastewater treatment, Solid waste - sources, impacts of solid waste, Zero waste concepts, 3 R concept. Global environmental issues- Resource degradation, Climate change, Global warming, Ozone layer depletion, Regional and Local Environmental Issues. Carbon credits and carbon trading, carbon foot print.

Environmental management standards, ISO 14000 series, Life Cycle Analysis (LCA) - Scope and Goal, Bio-mimicking, Environment Impact Assessment (EIA) - Procedures of EIA in India.

UNIT:3 (10 Hours)

Basic concepts of sustainable habitat, Green buildings, green materials for building construction, material selection for sustainable design, green building certification, Methods for increasing energy efficiency of buildings. Sustainable cities, Sustainable transport.

Energy sources: Basic concepts-Conventional and non-conventional, solar energy, Fuel cells, Wind energy, Small hydro plants, bio-fuels, Energy derived from oceans, Geothermal energy.

UNIT:4 (10 Hours)

Green Engineering, Sustainable Urbanisation, industrialisation and poverty reduction; Social and technological change, Industrial Processes: Material selection, Pollution Prevention, Industrial Ecology, Industrial symbiosis.

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books:

1. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.

Reference Books:

- 1. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning
- 2. Ni bin Chang, Systems Analysis for Sustainable Engineering: Theory and Applications, McGraw-Hill Professional.
- 3. Treatise on Sustainability Science and Engineering, by Ibrahim S. Jawahir, Subhas K. Sikdar, and Yinlun Huang (eds.), Springer, 2013.
- 4. Sustainable Development in Practice: Case Studies for Engineers and Scientists, by A. Azapagic and S. Perdan(eds.), Wiley-Blackwell, 2011.

Subject	t Cod	e		Course Title L T P C QP											QP	
BCHP	E7044	4	POLYMER TECHNOLOGY 3 0										0	0	3	
							Co	urse Ou	tcome							
]	Pre-Re	equisite:	s (If an	y)-						
						Co	urse E	ducatior	nal Obje	ective						
CEO1: To	equip	students	s with l	oasic k	nowle	dge of	polyn	ner syntl	nesis th	at will help t	hem to o	leve	lop ne	w ma	terials	3.
CEO2: To	study	various	proces	sing m	ethod	s of po	lymers	s and ela	astomer	s.						
CC)1	De	scribe	the po	lymer	rheolo	gy and	l propert	ties							
CC)2	Ex	plain tl	ne stru	cture a	and mo	lecula	r weight	of Pol	ymers						
CC)3	Ap	ply kn	owlego	de to d	evelop	new p	olymer	S							
CC)4	Un	derstai	nd the	variou	s proc	ess of j	polymer	ization							
COs			PROGRAMME OUTCOMES PSOs									s				
COS	1	2	3 4 5 6 7 8 9 10 11 12 1									1		2		
CO1	3	1	0	0	-	-		-	-	-	1			•		2
CO2	2	2	1	0	-	-	3	-	-	-						1
CO3	2	2	1	1 2												

Polymers - History of polymers, nomenclature of polymers, functionality, types of polymerization, Chemistry of polymerization, Classification of polymers, Mechanism of addition polymerization, kinetics of polymerization, polymerization techniques- bulk, dispersion, solution, suspension and emulsion polymerizations.

Unit:2 12 (Hours)

Elementary idea on polymer rheology & properties of polymers – physical, chemical, mechanical, electrical properties and optical properties of polymers-Crystallinity and glass transition temperature(Tg), macro molecular structure. Molecular weight of polymers and its determination by viscometry, light-scattering and osmotic pressure methods, polydispersity, Polymer degradation.

Unit:3 13 (Hours)

Manufacture and uses of important polymers: Thermoplastic Polymers – polyolefins – vinyl polymers – poly vinyl chloride, polyvinyl alcohol, polyvinyl acetate, polyethylene, polypropylene, polystyrene, PMMA, SAN, PAN, Teflon, polyamides, polycarbonates. Thermosetting Polymers – Phenolic resins-UF, MF, polyesters, epoxies, bisphenol-A, polyurethanes, silicone resins. Elastomers: Natural rubber – Isoprene rubber, Synthetic rubbers - Butadiene rubber- Butyl rubber- Styrene Butadiene Rubber-Chloroprene rubber- Nitrile rubber—EPDM rubber and Silicone rubber and their applications.

Unit:4 10 (Hours)

Polymer additives, Plastic materials and elastomers as materials of construction in chemical equipments, Introduction to reactor design for polymerization, Polymer processing, Processing of thermoplastics and thermosetting plastics, compounding, processing aids – injection moulding – extrusion moulding – blow moulding. Processing of natural and synthetic rubbers – vulcanisation, mastication, calendaring – reaction injection moulding – sintering - solution casting – SMC and DMC–fibre spinning and drawing.

Application of Polymers –Engineering plastics, Electrical and electronics- conducting polymers, high temperature applications- Polymer blends, alloys and liquid crystals- lithography and water treatment-biomedical, automotives.

Teaching Method (s): Chalk & Board/PPT/Video Lectures

Text Books 1: Billmever F.W., "Text book of Polymer Science," 3rd edn., Wiley, Singapore, 1984.

2: Polymer Science & Technology, P.Ghosh, TMC

0

Ref. Books 1: polymer science by joel fried

CO4

Subject Code	Course Title	L	T	P	C	QP
BCHPE7041	TREATMENT OF INDUSTRIAL	2		0	2	٨
BCHFE/041	EFFLUENT	3	U	U	3	A

Pre -Requisite:

Course Educational Objectives

CEO1: Emphasize on this course is on the fundamentals of pollution control aspects and characterization of effluent streams.

CEO2: Know the primary, secondary and advanced wastewater treatment process.

CEO3: Learn about different air pollutants sampling and analysis methods and air pollution control equipments.

CEO4: Understand the solid, hazardous waste and their treatment and disposal methods and Learn pollution control aspects for selected process industries.

	Course Outcomes: At the end of the course, the student will be able to:
CO1	Understanding of different types of pollution and apply knowledge for the protection and improvement of the environment
CO2	Select and use suitable wastewater treatment technique
CO3	Identify suitable sampling, analysis and equipment for air pollutants.
CO4	Apply their knowledge in controlling the pollution in process industries

co		PROGRAM OUT COMES										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	2	-	-	2	1	-	-	-	-	-
CO2	-	-	1	-	-	3	2	-	-	-	-	-
CO3	-	-	1	-	-	2	2	-	-	-	-	-
CO4	-	-	1	-	-	1	1	-	-	-	-	-

UNIT:1 (10 Hours)

Types of emissions from chemical industries and effects on environment, Type of pollution and their sources, Effluent guide lines and standards. Characterization of effluent streams, Oxygen demands and their determination (BOD, COD, and TOC), Oxygen sag curve, BOD curve mathematical, Controlling of BOD curve, Self purification of running streams.

UNIT:2 (10 Hours)

Wastewater treatment Process- Methods of primary treatment; Screening, sedimentation, flotation, neutralization, secondarytreatment: Biological treatment of wastewater and bacterial growth curve, suspended growth processes (activated sludge, aerated lagoon and stabilization pond), attached growth processes (trickling filter and rotating biological contactor); tertiary treatment methods (carbon adsorption, membrane separation, chlorination, and ozonation)

UNIT:3 (10 Hours)

Criteria and toxic air pollutants, Air pollution sampling and measurement: Ambient air sampling: collection of gaseous air pollutants, Collection of particulate air pollutants, Stack sampling: Sampling system, particulate and gaseous sampling.

Air pollution control methods and equipments:Source correction methods: raw material changes, process changes and equipment modification, Particulate emission control: collection efficiency, Control equipments like gravity settling chambers, Cyclone separators, Fabric filters, Electrostatic precipitator, Scrubbers (spray towers andventuri scrubbers), Gaseous emission control (SOx, NOx and organic vapor): absorption by liquids and adsorption by solids.

UNIT:4 (10 Hours)

Solid waste management: Sources and classification, Methods of collection (HCS and SCS), Disposal methods (Landfill and incineration) Hazardous waste management; Nuclear wastes; Health and environment effects, sources and disposal methods, Chemical wastes; Health and environment effects, Treatment and disposal. Pollution control in selected process industries: Fertilizer industries, Petroleum refineries and Thermal power plants.

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books:

- 1. Environmental Pollution and Control Engineering by Rao C.S-Wiley Eastern Limited, India, 1993.
- 2. Pollution Control in Processes Industries by S.P. Mahajan, TMH., 1985.

Reference Books:

- 1. Waste water treatment by M.NarayanaRao and A.K.Datta, 3rd Edition, Oxford and IHB, 2008.
- 2. Air Polution by MN Rao and H V N Rao, Tata McGraw Hill Education Private Limited, India, 2010.
- 3. Environmental Engineering by H.S.Peavy, P.R. Rowe, G. Tchobanoglous, McGraw Hill, 1985.
- 4. Wastewater engineering treatment and reuse by Metcalf and Eddy, 4th edition, Tata McGraw Hill Edition 2003

Subject Code	Title of The Subject	L	T	P	
BCHPE7042	POLUTATION AND ITS CONTROL	3	0	0	

Course Educational Objectives

CEO1: Apply the principles of waste minimisation, source reduction, material use and recovery in the design of solid and hazardous waste management systems.

CEO2: Assess air and noise pollution problem and apply control approaches needed through solving real problem in engineering practice

CEO3: Understand the solid, hazardous waste and their treatment and disposal methods and Learn pollution control aspects for selected process industries.

CEO4:Demonstrate ability to use appropriate equipment and techniques in the identification and control of environmental pollution.

CO1	Explain about the different types of solid waste
CO2	Understand the various collection and disposal method
CO3	Apply the knowledge to utilize solid waste in different way.
CO4	Develop new method for degradation process of solid waste

COs					PRO	GRA	MME	OUTC	OMES				PS	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		1		-	-		1	2	-	-	-	0		2
CO2		3					3	2	-	-	-			2
CO3		3					3	2	-	-	-	3		2
CO4		2					2	1	-	-	-			1

Unit:1 10 (Hours)

Air Pollution: Air pollution Control Methods-Particulate control devices – Methods of Controlling Gaseous Emissions – Air quality standards. Noise Pollution: Noise standards, Measurement and control methods – Reducing residential and industrial noise – ISO14000

Unit:2 10 (Hours)

Industrial wastewater Management: – Strategies for pollution control – Volume and Strength reduction Neutralization – Equalization – Proportioning – Common Effluent Treatment Plants – Recirculation of industrial wastes – Effluent standards.

Unit:3 11 (Hours)

Solid Waste Management: solid waste characteristics – basics of on-site handling and collection – separation and processing – Incineration- Composting-Solid waste disposal methods – fundamentals of Land filling. Environmental Sanitation: Environmental Sanitation Methods for Hostels and Hotels, Hospitals, Swimming pools and public bathing places, social gatherings (melas and fares), Schools and Institutions, Rural Sanitation-low cost waste disposal method

Unit:4 12 (Hours)

Hazardous Waste: Characterization – Nuclear waste – Biomedical wastes – Electronic wastes – Chemical wastes – Treatment and management of hazardous waste-Disposal and Control methods. Sustainable Development: Definition- elements of sustainable developments-Indicators of sustainable development- Sustainability Strategies-Barriers to Sustainability–Industrialization and sustainable development – Cleaner production in achieving sustainability- sustainable development

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures

Text Books 1: Environmental Engineering, by Ruth F. Weiner and Robin Matthews – 4th Edition Elesevier, 2003. 2: Environmental Science and Engineering by J.G. Henry and G.W. Heinke – Pearson Education.

Ref. Books 1 Environmental Engineering by Mackenzie L Davis & David A Cornwell. McGraw Hill Publishing

Subjec	t cod	e		Course Title L T P C QP												
BCHP	E801	1	MO	MODERN SEPARATION TECHNIQUES 3 0 0 3												
	Course Outcome															
	Pre-Requisites (If any)-															
	Course Educational Objective															
										aration mec		s, tra	nspor	t mod	lels, n	nembrane
										ne reactors,						
CEO2: to	unders	stand t	ne prep	aratio	n and	charac	cteriza	tion of	membi	ranes for dif	ferent a	pplic	ation	S.		
CC)1	E	xplain	about	Types	s of m	embra	ne avai	lable ir	n details.						
CC)2	D	escribe	the va	arious	filtrat	ion pr	ocesses								
CC)3	Il	lustrate	e the i	dea ab	out el	ectric	field se	paratio	n process						
CC)4	D	evelop	a sepa	ration	techn	ique i	n terms	of mo	deling.						
COs					PRO	GRA	MME	OUTC	OMES						PSO	S
COs	1	2	2 3 4 5 6 7 8 9 10 11 12 1 2											2		
CO1	2	1 0 3							2							
CO2	02 1 1 2 2 2 - - - -						_		1							
CO3	2	2	1	-	-			-	-	-	-	-		1		
CO4	1	0	0) 2												

Membrane, Classification, characterization and preparation of membrane, Membrane modules, Classification of membrane separation processes, Materials of membrane construction, Advantages of membrane processes, Major areas of application, preparation and characteristics of membranes.

Unit:2 10 (Hours)

Principles of membrane separation processes: Reverse osmosis, nano-filtration, ultra-filtration, micro-filtration, osmotic controlled filtration, gel layer controlled filtration. Basic principles and modeling of dialysis.

Unit:3 10 (Hours)

Electric field separation process: Zeta potential, electric double layer, Basic modeling of electric field enhanced filtration, Ionic separations like Electro dialysis, Electrophoresis. Ion exchange chromatography.

Unit:4 10 (Hours)

Liquid membrane and its modeling. Basic design of gas separation and pervaporation.

Cryogenic separation; Super- critical extraction, Reactive distillation.

Teaching Method (s): Chalk & Board/PPT/Video Lectures

Text Books 1: C. J. King –"Separation Processes", Tata McGraw Hill Publishing Co Ltd. 2:Seperation Process Principle by Seader and Henly

Ref. Books 1: Ullmanns, Encyclopedia of Industrial Chemistry, Vol 32, Wiley - VCH.6.

2: Kausikh Nath-"Membrane separation Praocesses", PHI, New Delhi

Subject code	Title of The Subject	L	T	P	
BCHOE8031	INTEGRATED SOLID WASTE	3	0	0	
BCHOE8031	MANAGEMENT				

Pre-Requisites (If any)-

Course Educational Objective

CEO1: To Understand the solid, hazardous waste and their treatment and disposal methods and Learn pollution control aspects for selected process industries.

CEO2:- To study various processing methods of polymers and elastomers.

CO1	Explain about the different types of solid waste
CO2	Understand the various collection and disposal method
CO3	Apply the knowledge to utilize solid waste in different way.
CO4	Develop new method for degradation process of solid waste

COs		PROGRAMME OUTCOMES												SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	-	-	2	-	-	2	1	-	-	-	-	-	1	
CO2	-	-	1	-	-	2	3	-	-	-	-	-	2	
CO3	-	-	1	-	-	2	2	-	-	-	-	-	1	
CO4	-	-	1	-	-	1	1	1	-	-	1	-	2	

Unit:1 10 (Hours)

Solid waste Management: Sources, Composition and Properties of Municipal Solid Waste, Engineering principles; Generation, Onsite handling, storage and processing including segregation; Collection, Recycling, Transfer and transport, Wasteprocessing, Recovery of resources.

Unit:2 10 (Hours)

Waste processing technologies, Biological, chemical and thermal technologies – Composting, Anaerobic digestion, Incineration and pyrolysis, Disposal of solid waste including sanitary landfill, planning, siting, design, closure and post-closure monitoring

Unit:3 10 (Hours)

Regional/Integrated solid waste management related issues. Principles of E-waste Management. Biomedical waste: Regulatory framework, categorization; generation, collection, transport, treatment and disposal.

Unit:4 10 (Hours)

Hazardous Waste Fundamentals, Definition, Classification, Generation, Regulatory process, Current Management Practices, Treatment and Disposal Methods, Physicochemical processes, Biological processes, Stabilization and solidification; Thermal methods; Land disposal, Remediation of Contaminated Sites.

Teaching Mentod (s): Chalk & Board/PPT/Video Lectures

Text Books 1: Peavy H. S., Rowe D. R. and Tchobanoglous G., Environmental Engineering, McGraw-Hill International Edition.

2:3. LaGrega, M.D., Buckingham P.L., and EvansJ.C., Hazardous Waste Management, McGraw-Hill International Editions, 1994

Ref. Books 1:Martin E.J. and Johnson J.H., Hazardous Waste Management Engineering, van NostrandReinhold,1987. 2: Wentz C.A., Hazardous Waste Management, 2nd Edition, McGraw Hill, 1995

Subject Code	Course Title	L	T	P	C	QP	
BCHPC7140	Advanced lab – II	3	0		3		
Cour	se Outcome: At the end of the course, the students wi	ll be	able	to			
CO1	Apply basic concepts to develop construction (drawing) tecl	nniqu	es.			
CO2	Ability to express programming & simulation for engin	eerir	ig pro	blen	ns.		
CO3 Familiarize The students to solve the steady and unsteady state problem							
CO4	Apply their knowledge in controlling the pollution in pa	roces	s ind	ustri	es		

- Finding out matrix addition, multiplication, inversion, rank, Eigen values using MATLAB simulator.
- 2. Plotting set of data using MATLAB.
- 3. Parameter estimation using least-square technique using MATLAB.
- 4. Writing "m." files in MATLAB platform to solve coupled linear algebraic equations using Gauss elimination method.
- 5. Writing "m." files in MATLAB platform to solve non-linear algebraic equations using Newton Raphson Technique.
- 6. Design of a shell & tube heat exchanger by using AUTOCAD.
- 7. Design of a distillation column by using AUTOCAD.
- 8. Design of a single effect evaporator by using AUTOCAD.
- 9. Design of an absorption tower by using AUTOCAD.
- 10. Design of a storage vessel by using AUTOCAD.
- 11. Generation of VLE data and plot T-x-y and P-x-y plots of binary systems using ASPEN PLUS.
- 12. Determination of the composition of the liquid mixture using high performance liquid chromatography.
- 13. Determination of concentration of dyes using spectrophotometric analysis.
- 14. Determination of velocity of ultrasonic wave in a medium of liquid using ultrasonic interferometer.
- 15. Study the operation and characteristics of Potentiostat.

UG IN CHEMICAL ENGINEERING

VIII SEMESTER [FOURTH YEAR]

Sl. No.	Course Category	Course Code	Course Title	L	Т	P	Credits
			THEORY				
		BCHPE8011	Process Instrumentation				
1	PE	BCHPE8012	Optimization Methods	3	0	0	2
1	PE	BCHPE8013	Physical and Analytical Chemistry	3	U	U	3
		BCHPE8014	Water Conservation and Management				
		BCHPE8021	Nanotechnology				
2	PE BCHPE8022 BCHPE8023		Fermentation Technology		0	0	2
2			Biotechnology	3	U	U	3
		BCHPE8024	BCHPE8024 Biochemical Engineering				
3	OE	B**OE803*	Open Elective-IV (Any One)	3	0	0	3
		PRA	ACTICAL / SESSIONAL	•	•	•	
4	EC	BCHEC8150	Major Project / Industrial Project / Startup Training cum Project	0	0	10	5
5	EC	BCHEC8180	Seminar and Technical Writing	0	0	2	1
6	EC	BCHEC8190	Comprehensive Viva-Voce	0	0	2	1
		TOTA	L	9	0	14	16

Subject code	Course Title	L	T	P	C	QP					
BCHPE8011	Process Instrumentation	3	0		3						
	Pre -Requisite:										
Course outcomes:	Course outcomes: At the end of the course, the student will be able to:										
CO1	Illustrate the operation of temperature measuring instruments us	sed in	indu	stries							
CO2	Choose suitable pressure measuring devices for different ranges	of p	ressu	re							
CO3 Select the suitable level measuring devices for open and closed vessels											
CO4	Classify the various flow measuring devices for industrial opearations.										

UNIT:1 [14 Hours]

Temperature measuring instruments

Elements of the instruments, Static and dynamic characteristics, Expansion thermometers - Mercury in glass thermometer, Bimetallic thermometer, Pressure spring thermometer, Static accuracy of thermometers, Response of thermometers, Thermo-electric temperature measurements - Thermoelectricity, Industrial thermocouple, Resistance thermometers - Thermal coefficient of resistance, Industrial resistance, Radiation receiving elements, Radiation, Photoelectric and Optical pyrometers

UNIT:2 [14 Hours]

Pressure-measuring instruments

Measurement of pressure and vacuum – Liquid column manometers, Measuring the elements for gauge pressure and vacuum, Indicating elements for pressure gauges, Measurement of absolute pressure, Measuring pressure in corrosive liquids, Static accuracy of pressure gauges

UNIT:3 [10 Hours]

Level measuring instruments

Relationship between head, density, and specific gravity, Direct measurement of liquid level, Pressure (level) measurements in open vessels, Level measurements in pressure vessels, Measurement of interface level, Density measurements, Level of dry materials

UNIT:4 [10 Hours]

Flow-measuring instruments

Differential pressure flow measurement devices - Orifice plate, Venture tube, Pitot tube, Head flow meters, Quantity meters - Nutating disk, Helical gear, Rotary vane and Lobed impeller flow meters, Turbine flow meter, Magnetic flow meter, Thermal flow meter, Mass flow meter, Coriolis flow meter, Viscosity measurements

Teaching Methods: Chalk& Board/PPT

Text Books:

- a. D.P.Eckman, Industrial Instrumentation, 1st ed., Wiley eastern, 1950
- b. Industrial Instrumentation and Control, 3rd ed. by S K Singh, McGraw-Hill.

Ref. Books:

- 1. Patranabis, Principles of Industrial Instrumentation, 3rd ed., TMH, 2001
- 2. Johnson, C.D., "Process Control Instrumentation Technology", Pearson Education, Inc.

Subject code	Course Title	L	T	P	C	QP			
BCHPE8012	Optimization Methods	3	0		3				
	Pre -Requisite:								
	CEO1:To introduce the students how to use variables for formulating complex mathematical models in								

management science, industrial engineering and transportation science

CEO2:To provide students with opportunity using various software package for solving liner programming and integer programming models

CEO3:To introduce the students to use of basic methodology for solution of linear programs and integer programs CEO4:To introduce the students to advance methods for large scale transportation and assignment problems

Course outcomes:	At the end of the course, the student will be able to:
CO1	Analyze, formulate and solve linear programming problems using appropriate techniques.
CO2	Conduct and interpret post-optimal and sensitivity analysis and explain the primal-dual relationship
CO3	Develop mathematical skills related to transportation and assignment problem can analyze and solve integer programming problem arising from a wide range of applications.
CO4	Communicate ideas, explain procedures and interpret results and solutions related to nonlinear programming problem

UNIT:1 [14 Hours] Introduction

Historical overview of operations research, fundamentals of OR Modeling Approach. Linear Programming: Basic assumptions, formulation, graphical method, simplex method, Big-M method, duality theory, primal-dual relationships, sensitivity analysis.

UNIT:2 [14 Hours]

Transportation and Assignment Problems

Specific features of transportation problem, streamlined simplex method for solving transportation problems, special features of assignment problems, Hungarian method for solving assignment problems. Integer programming: Special features, binary integer programming models-branch-and-bound technique.

UNIT:3 [10 Hours]

Dynamic Programming

Characteristics, principle of optimality, solution procedure, deterministic problems. Concepts relating to queuing systems, basic elements of queuing model, role of Poison & exponential distribution, concepts of birth and death process.

UNIT:4

Non-linear programming

Introduction to non-linear programming. Unconstraint optimization: Fibonacci and Golden Section Search method. Constrained optimization with equality constraint: Lagrange multiplier, Projected gradient method Constrained optimization with inequality constraint: Kuhn-Tucker condition, Quadratic programming Introduction to Genetic Algorithm.

Teaching Methods: Chalk& Board/PPT

Text Books:

- 1. Taha H.A., Operations Research 9th Edition, Prentice Hall of India, New Delhi, 2010Book
- 2. KantiSwarup., Man Mohan., and Gupta, P.K., Introduction to Operations Research 7thEdition, Sultan chand& Sons, New Delhi, 2005

Ref. Books:

- P.K.Gupta, D.S.Hira, "Operations Research", S.Chand and Company Ltd
- Hillier, F.S., and Lieberman G.J., Introduction to Operations Research, 7thEdition, TMH, 2009.

Subjec	t cod	le				C	ours	e Titl	e			L	T	P	C	QP
ВСНР	E801	.3	PHYSICAL AND ANALYTICAL CHEMISTRY 3									0	0	3		
							Co	urse O	utcom	e						
			Pre-I	Requis	sites (If any)-Org	ganic C	hemis	try, Inorga	nic Che	mist	ry			
				Course Educational Objective												
				ents to acquire knowledge in the field of electrochemistry, solubility behaviour, and colloidal chemistry, adsorption towards different applications												
CEO2 : T purposes	CEO2 : To enable the students to acquire knowledge in the field of chromatography, spectroscopy for analytic												lytic			
CC) 1		kplain olecula			r of ar	nd inte	eraction	s betw	een, matter	and ene	rgy a	at the	atom	ic and	l
co)2		pply q ysical				_		letermi	ne quantitie	es of ma	tter a	ınd eı	nergy	invol	ved in
CC)3	A	nalyze	the at	omic	struct	ure, cl	hemical	bondi	ng and mole	ecular ge	eome	etry b	ased	mode	I
CC)4	A	dopt th	ie wor	kings	envir	onmei	nt to wo	rk wit	h various in	strumen	its				
COs					PRO	GRA	MME	OUTC	OMES						PSO	S
	1	2	3	4	5	6	7	8	9	10	11	12		1		2
CO1	3	3	0	0	-	-	-	-	-	-	-	-		3		
CO2	3	3	0	0	-	-	-	-	-	-	-	_		2		
CO3	2	2	2	1	-	-	-	-	-	-	-	-		1		
CO4	1	0	0	0 0 2												

Colloidal system-Introduction and properties of colloidal systems, (preparation details not required), electrical properties, electro kinetic properties: electrophoresis and electro-Osmosis, gels and emulsions Simple mixtures: Partial molar quantities, Theory of mixing; Solution of non-volatile solutes; Colligative properties; Mixture of volatile liquids; Phase rule and phase equilibrium.

Juit:2

Electro-kinetic phenomena: Ion Transport, Conductivity and Ionic Interactions; Conduct metric titration; Processes at electrode (Electrical double layer, Rate of charge transfer, Over potential and other related aspects); Electrochemical processes; Power generation and storage (Fuel cells, Storage batteries); Corrosion and electrolysis (Elementary idea only).

Unit:3

Adsorption at surfaces: Growth and structure of solid surfaces; Physical adsorption, and chemical adsorption; applications of adsorption, adsorption of gases by solids Extent of adsorption and adsorption isotherms; Freundlich adsorption isotherm; B.E.T. theory of multilayer adsorption.

Unit:4 13 (Hours)

Chromatography and chromatographic methods of analysis. Atomic and molecular spectra: Spectra of simple and complex atoms; General features of spectroscopy; Rotation and vibration of molecules; Electron Spin and Nuclear Magnetic Resonance, Atomic absorption spectroscopy; UV and Visible spectro-photometry; IR absorption spectroscopy; Fluorescence spectroscopy; Mass spectroscopy; Emission spectroscopy; Introduction to NMR spectroscopy; Raman spectroscopy; Moss Bauer spectroscopy.

Teaching Mentod (s): Chalk & Board/PPT

Text Books

- 1: Puri. B.R., Sharma. L.R.and Madan. S. Pathania, "Principles of Physical Chemistry", 44th Edn., Vishal Publishing Co, Jallandhar, 2010
- 2: Samuel. H, Maron and Carl.F, Prutton, Principles of Physical Chemistry, 4th Edn., Amerind Publishing Co., 1972.

Ref. Books

- 1: Seamus P.J. Higson: Analytical Chemistry.
- 2: Douglas A. Skoog and Donald M..West: Fundamentals of Analytical Chemistry.

Subject code	Course Title	L	T	P	C	QP						
BCHPE8014	3	0	0	3								
	Course Outcome: At the end of the course, the student will be able to:											
	Pre-Requisites (If any)-											
CO1	Understand the economic, social and environmental issues associated	with	wate	r use.								
CO2	Calculate peak runoff rates and volumes for storm water in natural an	d dev	elope	ed lan	dscap	es.						
CO3	Design and detail water conservation and management projects including water harvesting, constructed wetlands and biological treatment of sewage and storm water.											
CO4 Produce designs and technical drawings for drip irrigation and water management plans.												

Concepts of Hydrology: Hydrological cycle, water balance, precipitation, infiltration, evaporation and evapotranspiration, Rainfall-runoff relationships, Hydrologic instrumentation, Flood flows, Low Flows. Urban Hydrology, Groundwater, Groundwater chemistry, contamination and pollution prevention.

Unit:2 12 (Hours)

Water Quality: Physical water quality parameters, Chemical water quality parameters, Biological water quality parameters, Water quality requirements and water quality standards.

Water pollution: Freshwater Pollution, Estuarine water pollution, Marine pollution, Water quality in rivers and lakes: parameters of organic content of water quality, DO and BOD in streams, transformation process in water bodies, oxygen transfer by inter phase transfer in water bodies, turbulent mixing in rivers, water quality in lakes and reservoirs, groundwater quality.

Unit:3 10 (Hours)

Water conservation: Global water crisis figures, increased global water stress, Global Climate change, Water availability and usage, water audits, Goals of water conservation, History of water conservation in India, Principles of water harvesting and conservation, traditional and modern Water conservation techniques, cost analysis, Benefits of water conservation, water conservation in homes; water conservation in the work place; water conservation in agriculture; water conservation in process industry; water conservation in construction industry; water conservation in service industry.

Unit:4 13 (Hours)

Water governance and water policy issues, water, sustainability, and development, Water Resources Management: Functions of Water Resources Management, Water Scarcity and its impacts, Water Shortages vs. WRM, Water Resources Management in india. Water Demand Management: Concept, Potential Stresses on Water Demand, The Demand Management Approach, Water Demand and Water Quality Management, methods and techniques for water management, Integrated Water Resources Management: Definition of IWRM, IWRM Principles, How to Implement IWRM, Legislative and Organizational Framework, Methods of testing water quality. Preserving water quality, minimizing evaporation, water sanitation,

Teaching Mentod (s):Chalk & Board/PPT

Text Books

- 1. Environmental Engineering, Irwin/ McGraw Hill International Edition, 1997, G. Kiely,
- 2. Water Resources Management, by Libor Jansky,

Ref. Books

- 1. "System Approach to Water Management" by A K Biswas, McGraw-Hill Inc., US
- 2. "Water Resources Systems Engineering" by W A Hall and J A Dracup

Subject code	Course Title	L	T	P	C	QP					
BCHPE8021	NANOTECHNOLOGY	3	0	0	3						
	Course Outcome										
	Pre-Requisites (If any)-										
CO1	Explain properties on nano particle.										
CO2	Make use of various instrument like SEM, TEM, STM and DLS	S									
CO3	CO3 Describe about the chemical engineering process and nano synthesis process										
CO4	CO4 Apply the knowledge of nano technology in different field										

Nano Scale, history and Scope of Nano Technology., Nanomaterials, Morphology. Enhanced properties at nano scale. Comparison with bulk materials.

Unit:2

Top Down Approach, Grinding, Planetary milling and Comparison of particles, Bottom Up Approach, Wet Chemical Synthesis Methods, Micro emulsion Approach, Colloidal Nanoparticles Production, Sol Gel Methods, Son chemical Approach, Microwave and Atomization, Gas phase Production Methods: Chemical Vapour Depositions.

Introduction to Instrumentation and characterization Instrumentation Fractionation principles of Particle size measurements, Particle size and its distribution, XRD, Zeta potential, SEM, TEM, AFM, STM, DLS, Spectroscopy. etc.

Unit:3

Kinetics at Nanoscale, Nucleation and growth of particles, Issues of Aggregation of Particles, Oswald Ripening, Stearic hindrance, Layers of surface Charges, Zeta Potential and pH,

Carbon Nanomaterials, Synthesis of carbon buckyballs, List of stable carbon allotropes extended fullerenes, metallofullerenes solid C60, bucky onions nanotubes, nanocones, Difference between Chemical Engineering processes and nanosynthesis processes

Unit:4 10 (Hours

Applications of Nano Technology. Applications in Chemical Engineering like nanocatalyst, bio analytical tools, nano/micro arrays, nano devices

Teaching Method (s): Chalk & Board/PPT/Video Lectures

Text Books 1: Sulabha K. Kulkarni, Nanotechnology: Principles and Practices, Capital Publishing Company, 2007. 2.Gabor L. Hornyak., H.F. Tibbals, Joydeep Dutta, John J. Moore, Introduction to Nanoscience and Nanotechnology, CRC Press, 2008.

Ref. Books 1: Stuart M. Lindsay, Introduction to Nanoscience, Oxford University Press, 2009.

2:. Poole C., and Owens F., Introduction to Nanotechnology, John Wiley, New Jersey, 2003.

Subject Code	Course Title	L	T	P	C	QP						
BCHPE8022	Fermentation Technology	3										
	Pre -Requisite:											
	Course Educational Objective											
CEO1: To provide k	CEO1: To provide knowledge on different of fermentation process											
CEO2:To have theor	ry and practicle knowledge on purification of products											
	Course Outcome											
CO1	Under graduate will get idea on different fermentation technology	ologie	S									
CO2	They understand the importance on enzyme in fermentation	process										
CO3	CO3 Importance of micro organism in fermentation											
CO4	To get knowledge of downstream process											
TINITED 4					(6) TT (

UNIT:1 (8 Hours)

Range of Fermentation processes, Microbial growth kinetics, Microbial biomass, Microbial enzymes, Microbial metabolites, Recombinant products, Batch culture, continuous culture, Microbial culture selection for fermentation processes. Media formulation and process optimization.

UNIT:2 (10 Hours)

Industrial production of proteases, cellulases, amylase, lipase; Process parameters that influence enzyme production during submerged and solid state fermentation, production of biofuel.

UNIT:3 (10 Hours)

Isolation, preservation and improvement of industrial micro organism, development of media for industrial fermentation. Development of inoculums for yeast and bacterial processes.

UNIT:4 (10 Hours)

Removal of microbial cells, Precipitation, filtration, centrifugation. Cell disruption, extraction and chromatography, Drying and crystallization.

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books 1Principles of Fermentation Technology by P.F. Stanbury, A. Whitaker, and S.J Hall, Pergamon

2 Basic Fermentation Technology by S.M.Reddy, New Age International Pvt.ltd.s

Ref. Books 1Bioprocess Engineering by Bjorn K. Lydersen, et. al ,Wiley India Edition

2 2 Bioprocess Engineering by M.L. Shuler and F.Kargei Person

Subject Code	Course Title	L	T	P	C	QP						
BCHPE8023	BioTechnology	3	0	0	3							
	Pre -Requisite:											
	Course Educational Objective											
CEO1: To provide known	owledge on different of fermentation process											
CEO2:To have theory	and practicle knowledge on purification of products											
	Course Outcome											
CO1 C	Categorize the different cells and their use in biochemical production	cesse	S									
CO2 A	ssess the role of enzymes in kinetic analysis of biochemical r	eactio	on									
CO3 Utilize the basic concepts of thermodynamics, mass and energy balances, reaction kinetics and reactor design for biochemical processes												
CO4 Analyze bioreactors, upstream and downstream processes in production of bio-products												

UNIT:1 (8 Hours)

Introduction and application of microbiology, Structure and functioning of bacterial cell,

Classification and Identification criteria for bacteria. Nutritional requirements and nutritional types of bacteria.

UNIT:2 (10 Hours)

Isolation of micro-organisms, pure culture techniques and cultural characteristics. Bacterial growth, measurements and reproduction.

UNIT:3 (10 Hours)

Fundamentals of microbiology ecology and ecosystems, microbial associations and interactions. Applications of microbiology.

UNIT:4 (10 Hours)

Types of bacteria in water, sanitary examination of water, water purification, average disposal and sewage purification.

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books

- 1. Microbiology, 4th ed. by MJPelczar, RDReid, and ECSChan, McGraw-Hill.
- 2. Microbial Ecology: Fundamentals and Applications, 4th ed. by R M Atlas and R Bartha, Benjamin Cummings.

Ref. Books 1Bioprocess Engineering by Bjorn K. Lydersen, et. al ,Wiley India Edition

2 2 Bioprocess Engineering by M.L. Shuler and F.Kargei Person

Subject code	Course Title	L	T	P	C	QP					
BCHPE8024	BIOCHEMICAL ENGINEERING	3	0	0	3						
	Course Outcome										
	Pre-Requisites (If any)-										
CO1	Categorize the different cells and their use in biochemical p	rocess	es								
CO2	Assess the role of enzymes in kinetic analysis of biochemica	al react	ion								
CO3	CO3 Utilize the basic concepts of thermodynamics, mass and energy balances, reaction kinetics and reactor design for biochemical processes										
CO4	Analyze bioreactors, upstream and downstream processes in production of bio-products										

Introduction to microbiology and biochemistry; Classification and characteristics of microorganism; Essential chemicals of life- lipids, sugars and polysaccharides, RNA and DNA, amino acids and proteins;

Unit:2 10 (Hours)

Enzymes and their classification; Enzyme kinetics; Immobilization of enzymes and whole cells; Immobilized enzyme kinetics Cell metabolism; Regulation; Stoichiometry; End products. Cell growth kinetics; Product formation kinetics

Unit:3

Transport phenomena in cellular systems; Oxygen transfer rates; Mass transfer coefficient and interfacial area; Mechanical agitation and power requirement. Thermal death kinetics; Media and air sterilization.

Unit:4 10 (Hours)

Bioreactors: Type, design, operation and scale-up; Instrumentation and control. Down-stream processing, Industrial production of ethanol, anti-biotics, single cell protein. Bioleaching. Effluent treatment by biological method.

Teaching Mentod (s): Chalk & Board/PPT/Video Lectures

Text Books 1:. Bailey, J.E. and Ollis, D.F., "Biochemical Engineering Fundamentals", McGraw-Hill. 2:Aiba, S., Humphery, A.E. and Milli, N.R., "Biochemical Engineering", Academic Press.

Ref. Books 1:Biochemical Engineering and Biotechnology - 1st Edition. Print Book & E-Book. ISBN9780444528452,

2:Biochemical Engineering and Biotechnology by Ghasem Najafpour

DEPARTMENT OF CHEMICAL ENGINEERING

GANDHI INSTITUTE OF ENGINEERING & TECHNOLOGY, GUNUPUR

OPEN ELECTIVE (OE)

		DEPARTMENT OF CHEM	MICAL ENGINEERING	
SL NO.	OE 1	OE 2 OE 3		OE 4
1	UPSTRAM PROCESS ENGINEERING	BIOCHEMICAL REACTION ENGINEERING	FUEL AND ENERGY TECHNOLOGY	INTEGRATED SOLID WASTE MANAGEMENT
2	BASIC CHEMICAL ENGINEERING	NOVEL SEPERATION TECHNIQUES	GREEN TECHNOLOGY	POLLUTION AND ITS CONTROL
3	PROCESS UTILITY AND INDUSTRIAL SAFETY	CORROSION ENGINEERING	BATTERY TECHNOLOGY	TREATMENT OF INDUSTRIAL EFFLUENT

OPEN	N ELECTIVE – 1					
SL NO	SUBJECT CODE	SUBJECT		Т	P	CREDIT
1	BCHOE5051	UPSTRAM PROCESS ENGINEERING				
2	BCHOE5052	BASIC CHEMICAL ENGINEERING	3	0	0	3
3	BCHOE5053	PROCESS UTILITY AND INDUSTRIAL SAFETY				
OPEN	N ELECTIVE – 2		1	ı	ı	
1	BCHOE6051	BIOCHEMICAL REACTION ENGINEERING				
2	BCHOE6052	NOVEL SEPERATION TECHNIQUES	3	0	0	3
3	BCHOE6053	CORROSION ENGINEERING				
OPEN	VELECTIVE – 3					
1	BCHOE7051	FUEL AND ENERGY TECHNOLOGY				
2	BCHOE7052	GREEN TECHNOLOGY	3	0	0	3
3	BCHOE7053	BATTERY TECHNOLOGY				
OPEN	N ELECTIVE – 4		•	•		
1	BCHOE8031	INTEGRATED SOLID WASTE MANAGEMENT				
2	BCHOE8032	POLLUTION AND ITS CONTROL	3	0	0	3
3	BCHOE8033	TREATMENT OF INDUSTRIAL EFFLUENT				

Su	ıbject Code	Title of The Subject	L	T	P	C	QP			
В	CHOE5051	UPSTREAM PROCESS ENGINEERING								
		Course Outcome								
	Pre-Requisites (If any)-									
CO1	CO1 Describe the operation, as well as constriction and exploitation characteristics of machines for mechanical operations.						•			
CO2										
CO3 Make use of empirical equations to solve forced and natural convection heat-transfer problems					S					
CO4	Design the distillar	ion column								

Processing of particulates Properties and handling of particulate solids, size reduction equipments- working principles of crusher, grinder and pulveriser, screening and particle size distribution.

Unit:2

Methods of analysis and description - fluid as a continuum, Classification of fluid. Fluid statics - basic equation - equilibrium of fluid element - Hydrostatic Pressure, Pressure measuring Devices. Flow in boundary layers. Its formation & growth in tubes & plates. Basic equations of fluid flow continuity, momentum & Bernoulli's equation. Flow measuring devices; Venturi, Orifice, Pitot tube & Rotameter.

Unit:3 12 (Hours)

Modes of heat transfer, basic laws of heat transfer, Conduction: The Fourier heat conduction equation, Steady-state one dimensional heat conduction through plane wall, cylindrical wall, spherical wall and composite structures. Heat transfer from extended surfaces, critical insulation of thickness. Introduction to convection: Natural and forced convection, Natural Convection: Grashoff number, natural convection from vertical and horizontal surfaces. Forced convection, The convective heat transfer coefficient, Types of heat exchangers, log-mean temperature difference, energy balances, overall heat transfer coefficients

Unit:4 13 (Hours)

Introduction to Mass transfer operations, molecular diffusion in fluids, binary solutions, Fick's law, equation of continuity, steady state equimolal counter current diffusion, Stefan-Maxwell equation, diffusivity of gases and liquids, application of molecular diffusion, mass transfer coefficients, in laminar and turbulent flow, Interphase mass transfer, Film theory, Penetration theory, surface-renewal theories, analogy between mass, heat and momentum transfer. relative volatility, ideal solutions, azeotropes, enthalpy concentration diagrams, flash vaporization, partial condensation, differential distillation steam distillation, azeotropic and extractive distillation. Continuous distillation

Teaching Mentod (s): Chalk & Board/PPT/Video Lectures

Text Books 1:.McCabe, Smith and Harriot, Unit Operations of Chemical Engineering 2. Foust et al, Principles of Unit Operations.

Ref. Books 1: Badger and Banchero. Introduction to Chemical Engineering.

2: Foust, Wenzel, Clump, Maus and Andersen, Principles of Unit Operations.

	Subject Code	Title of the subject	L	T	P								
	ВСНОЕ5052	PROCESS UTILITY AND INDUSTRILA SAFETY	3	0	0								
	Course Outcome												
	Pre-Requisites (If any)-												
CO1	Explain the differen	nt types of safety precaution to be taken in working	ng envir	onment	i.								
CO2	Describe the variou	s safety rules and regulation											
CO3	CO3 Developed a new safety methods												
CO4	Study the different hazardous effect of accident inside the plant.												

Hard and Soft water, Requisites of Industrial Water and its uses. Methods of water Treatment such as Chemical Softening and Demineralization, Resins used for Water Softening and Reverse Osmosis. Effects of impure Boiler Feed Water.

Unit:2 10 (Hours)

Properties of Steam, problems based on Steam, Types of Steam Generator such as Solid Fuel Fired Boiler, Waste Gas Fired Boiler and Fluidized Bed Boiler. Scaling and Trouble Shooting. Steam Traps and Accessories.

Unit:3 10 (Hours)

Refrigeration Cycles, Methods of Refrigeration used in Industry and Different Types of Refrigerants such as Monochlorodifluro Methane, Chlorofluro Carbons and Brins. Refrigerating Effects and Liquefaction Processes.Compressed air:Classification of Compressor, Reciprocating Compressor, Single Stage and Two Stage Compressor, Velocity Diagram for Centrifugal Compressor, Silp Factor, Impeller Blade Shape. Properties of Air – Water Vapors and use of Humidity Chart. Equipments used for Humidification, Dehumidification and Cooling Towers.

Unit:4 10 (Hours)

History of Safety movement–Evolution of modern safety concept-general concepts of management–planning for safety for optimization of productivity-productivity, quality and safety-line and staff functions for safety-budgeting for safety-safety policy.

Incident Recall Technique (IRT), disaster control, job safety analysis, safety survey, safety inspection, safety sampling, evaluation of performance of supervisors on safety

Teaching Mentod (s): Chalk & Board/PPT/Video Lectures

Text Books 1: Eckenfelder, W. W, Jr. "Industrial Water Pollution Control" McGraw-Hill: New York, 2: P. L. Ballaney, "Thermal Engineering", Khanna Publisher New Delhi, 1986.

Ref. Books 1: P. N. Ananthanarayan, "Basic Refrigeration & Air conditioning", Tata McGraw Hill, New Delhi, 2007

Sul	oject code	Title Of The Subject	L	T	P		
ВС	HOE6051	BIO-CHEMICAL REACTION ENGINEERING	3	0	0		
		Course Outcome					
		Pre-Requisites (If any)-					
CO1	Describe the	bioprocess monitoring/control					
CO2	Design of ide	eal reactors for single and complex reactions and non-isot	hermal	reactor	S		
CO3	Illustrate ope	eration and choice of bioreactor					
CO4	Explain heat	& mass transfer and scale up of bioprocesses					
TT 1. 4	7.4.4						

Material Balance & Energy Balances: Mathematical requisites – use of log-log and semi-log graph paper, triangular diagram, graphical differentiation and graphical integration, material balance without chemical reaction, material balance with chemical reaction, energy balance; enthalpy changes, heat of reaction and its temperature dependence, heats of solution and mixing, adiabatic flame temperature, use of psychometric charts.

Unit:2 10 (Hours)

Kinetics of homogeneous reactions: classification of reactions, reaction rate, speed of reaction, rate equation, concentration-dependent term of rate equation, rate constant, order and molecularity, representation of elementary and nonelementary reactions, kinetic models for nonelementary reactions, temperature-dependent term of a rate equation, activation energy and temperature dependency.

Unit:3 13 (Hours)

Kinetic analysis of batch reactor data: Integral and differential methods for analyzing kinetic data, interpretation of constant volume batch reactor, data for zero, first, second and third order reactions, half life period, irreversible reaction in parallel and series, auto catalytic reaction. Kinetic interpretation of batch reactor data for single reactions: interpretation of variable volume batch reaction data for zero, first and second order reactions, Ideal batch reactor, steady state CSTR and plug flow reactors and their use for kinetic interpretation. Design for single reaction: size comparison of single reactors, plug flow reaction in series and/or parallel, equal and different size of mixed reactor in series, finding the best system for given conversion, recycle reactor, Design of multiple reactions in batch, CSTR and PFR.

Unit:4 12 (Hours)

Biochemical reaction systems: Cell and enzyme fermentation, Monod's model of growth kinetics. Kinetics of Enzyme catalyzed reactions for free and immobilized enzymes. – derivation of Michaelis-Menten equation, Briggs-haldane relationship, the determination and significance of kinetic constants, Lineweaver-burk and Eadie-Hofstee plot, principles of enzyme inhibition – Competitive, noncompetitive and uncompetitiveMichaelish-Menten kinetics, inhibition by foreign substances, kinetics of competitive and noncompetitive inhibitions, microbial fermentation, batch fermentor and mixed flow fermentor, kinetic expressions of fermentation.

Teaching Mentod (s): Chalk & Board/PPT/Video Lecture

Text Books 1:Chemical process Principles (Part I & II), Houge, Watson & Ragatz, Asian Student Edition Asia Publishing House

2.Basic Principles and Calculations in Chemical Engineering, Himmelbalu, Prentice Hall (I) 6th Ed.

Ref. Books 1:Levenspiel, O., Chemical Reaction Engineering, Wiley Eastern Ltd. 2:Smith & Vanes, Thermodynamics for Chemical Engineers, MGH.

Subject code		Title of the Subject	L	T	P							
всно	DE6052	NOVEL SEPARATION TECHNIQUES	3	0	0							
	Course Outcome											
	Pre-Requisites (If any)-											
CO1	Explain a	bout Types of membrane available in details.										
CO2	Describe t	the various filtration processes.										
CO3	CO3 Illustrate the idea about electric field separation process											
CO4	Develop a	Develop a separation technique in terms of modeling.										

Membrane, Classification, characterization and preparation of membrane, Membrane modules, Classification of membrane separation processes, Materials of membrane construction, Advantages of membrane processes, Major areas of application, preparation and characteristics of membranes.

Unit:2 10 (Hours)

Principles of membrane separation processes: Reverse osmosis, nano-filtration, ultra-filtration, micro-filtration, osmotic controlled filtration, gel layer controlled filtration. Basic principles and modeling of dialysis

Unit:3 10 (Hours)

Electric field separation process: Zeta potential, electric double layer, Basic modeling of electric field enhanced filtration, Ionic separations like Electro dialysis, Electrophoresis. Ion exchange chromatography.

Unit:4 10 (Hours)

Liquid membrane and its modeling. Basic design of gas separation and pervaporation. Cryogenic separation; Super- critical extraction, Reactive distillation.

Teaching Method (s):Chalk & Board/PPT/Video Lectures

Text Books 1: C.J.Geankoplis-"Transport processes and unit Operations", PHI, New Delhi 2.Ronald W.Roussel- Handbook of Separation Process Technology, John Wiley.

Ref. Books 1:Ullmanns, Encyclopedia of Industrial Chemistry, Vol 32, Wiley - VCH.6. 2:Kausikh Nath-"Membrane separation Praocesses",PHI,New Delhi.

Su	bject code	Title of the subject	L	T	P							
ВС	СНОЕ6053	COROSION ENGINEERING	3	0	0							
	Course Outcome											
		Pre-Requisites (If any)-										
CO1	Explain about Typ	es of corrosion available in details.										
CO2	Describe the vario	us corrosion controlled processes.										
CO3	CO3 Illustrate the idea about prevention strategies process											
CO4	Develop a microbi	Develop a microbial influenced corrosion in terms of case studies.										

Corrosion – introduction, definitions and types,Electrochemical cells-definitions and Principles,Potential measurements – galvanic cells, concentration cells.,EMF and Galvanic series – bimetallic couples., Eh-pH diagrams – fundamental aspects.,Construction of Eh – pH diagrams. Fe- H2O-O2 diagram.,Copper, Aluminium and general corrosion diagrams

Unit:2

Electrode – solution interface –definition and types of polarization. Exchange current density – polarization relationships., Polarization techniques – corrosion rate determination., Mixed potentials – concepts and Basics., Mixed potential theory – bimetallic couples, Mixed potential theory – activation and diffusion controlled processes

Unit:3

Prevention strategies – design and coatings, Prevention strategies – inhibitors and surface engineering. Cathodic protection – principles and classification.,Cathodic protection – influencing factors and monitoring., Design aspects for cathodic protection. Stray current corrosion.,Passivity – definitions and influencing parameters,Passivity – application of mixed potential theory,Passivity – design of corrosion resistant alloys. Anodic protection

Unit:4 12 (Hours)

Microbially influenced corrosion (MIC- definitions, environments and microbiology,MIC - Electrochemical aspects and general mechanisms., MIC - Bacterial transport, attachment and affected materials. MIC - Role of aerobic and an aerobic microorganisms Mechanisms and models for SRB corrosion. MIC and Biofilms. MIC - case studies and mechanisms

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures /MOOC/ Internship/Industry Guest Lecture/Invited Guest Lecture Demonstration.

(can be chosen one or many)

Text Books 1:Denny A Jones, Principles and Prevention of Corrosion (second edition), Prentice-Hall, N. J. (1996).

2.M. G. Fontana, Corrosion Engineering (Third Edition) McGraw-Hill Book Company (NY) (1987)

Ref. Books 1:H. H. Uhlig and R. W. Revie, Corrosion and Corrosion Control, Wiley (NY) (1985). 2:M.Pourbaix, Atlas of Electrochemical Equilibria in aqueous solutions, NACE, Houston (1974).

Subject code		Title of the Subject	L	T	P					
ВСНОЕ7051		FUEL TECHNOLOGY Course Educational Objective								
Course Outcome										
		Pre-Requisites (If any)-								
CO1	Differentiate solid	l, liquid and gaseous fuels								
CO2	Apply the knowled	dge of characterization techniques for fuels								
CO3	CO3 Develop the alternate energy sources									
CO4	O4 Explain the modern energy conversion technologies									

Fuels: Solid Fuels: Coal - Origin, Chemical composition, calorific value, Classifications, Characteristics & distribution of Indian coals, Storage and spontaneous combustion of coal, Coal washing and blending, Pertrographic constituents of coal, Carbonization of coal, manufacture and properties of metallurgical coke, recovery of by-products

Unit:2 10 (Hours)

Liquid Fuels: Origin and composition of crude oil, crude oil distillation and its products with special reference to gasoline, Kerosene and diesel oil, cracking and reforming, Coaltar distillation Products, Shale oil.

Unit:3 10 (Hours)

Gaseous Fuels: Natural gas, coal gas. Coke oven and blast furnace gas, Manufacture of Water gas and producer gas, Carburetted water gas. Synthetic Fuels: Hydrogenation of coal, fischer – Tropsch synthesis,

Unit:4 10 (Hours)

Gaseous Fuels: Natural gas, coal gas. Coke oven and blast furnace gas, Manufacture of Water gas and producer gas, Carburetted water gas. Synthetic Fuels: Hydrogenation of coal, fischer – Tropsch synthesis.

Teaching Mentod (s): Chalk & Board/PPT/Video Lectures

Text Books 1: Fuels and Combustion - S. Sarkar

2. Elements of Fuel Technology - Himus

Ref. Books 1:Solid, Liquid and gaseous fuel - Brame and King.

2: Elements of Fuels, Furnaces and Refractories, O. P. Gupta

Su	bject code	Title of the subject	L	T	P							
ВС	СНОЕ7052	GREEEN TECHNOLOGY Course Educational Objective	3	0	0							
	Course Outcome											
		Pre-Requisites (If any)-										
CO1	Explain the indust	rial ecology in green technology										
CO2	Understand the ma	aterial and energy balance										
CO3	Compare benefit of	f non conventional ennergy over conventional ene	ergy									
CO4	Apply the knowled	Apply the knowledge for utilization of non conventional energy										

Green Technology – definition- Importance – Historical evolution – advantages and disadvantages of green technologies-factors affecting green technologies- Role of Industry, Government and Institutions – Industrial Ecology – role of industrial ecology in green technology.

Unit:2 12 (Hours)

Definition – Importance – Historical evolution – Principles of Cleaner Production–Benefits–Promotion – Barriers – Role of Industry, Government and Institutions – clean development mechanism, reuse, recovery, recycle, raw material substitution-Wealth from waste, case studies. Overview of CP Assessment Steps and Skills, Process Flow Diagram, Material Balance, CP Option Generation – Technical and Environmental Feasibility analysis – Economic valuation of alternatives – Total Cost Analysis – CP Financing – Preparing a Program Plan – Measuring Progress-ISO 14000.

Unit:3 10 (Hours)

Pollution Prevention and Cleaner Production Awareness Plan – Waste audit – Environmental Statement, carbon credit, carbon sequestration, carbon trading, Life Cycle Assessment – Elements of LCA – Life Cycle Costing – Eco Labelling.

Unit:4 13 (Hours)

Availability and need of conventional energy resources, major environmental problems related to the conventional energy resources, future possibilities of energy need and availability. Non-conventional energy sources: Solar Energy-solar energy conversion technologies and devices, their principles, working andapplication. Definition-benefits and challenges – comparison of green fuels with conventional fossil fuels with reference to environmental, economical and social impacts- public policies and market-driven initiatives. Biomass energy: Concept of biomass energy utilization, types of biomass energy, conversion processes.

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures

(can be chosen one or many)

Text Books 1: Pollution Prevention: Fundamentals and Practice' by Paul L Bishop (2000), McGraw Hill International.

2:Pollution Prevention and Abatement Handbook – Towards Cleaner Production' by World Bank Group (1998), World Bank and UNEP, Washington D.C.

Ref. Books 1:Handbook of Organic Waste Conversion' by Bewik M.W.M

2:Non-conventional Energy Sources' by Rai G.D.

	Subject code	Title of the subject	L	T	P							
]	ВСНОЕ7053	BATTERY TECHNOLOGY Course Educational Objective										
	Course Outcome											
	Pre-Requisites (If any)-											
CO1	Explain about Type	es of battery available in details.										
CO2	Describe the variou	s battery manufacturing processes.										
CO3	CO3 Illustrate the idea about fuel cell.											
CO4	Apply the knowledge for recycle and reuse of battery.											

General background on alternative energy sources and sustainability, Introduction to electric-based transportation, Introduction to battery, Dry Cell, Alkaline Battery, Li-ion batteries (main focus) ,Principle of operation ,Battery components and design ,Electrode, cell and battery fabrications ,Building block cells, battery modules and packs ,Li, polymer, batteries and applications ,All solid state batteries and future developments ,Li-S battery, future battery ,Li-Air battery, frontier battery.

Unit:2

Sodium-battery ,Magnesium battery ,Aluminum battery ,Silicon battery, Nickel Metal Hydride Battery :Advance Ni-MH batteries for transportation ,Future prospects of Ni-MH batteries vs. lithium ion batteries, Lead-acid battery Advance lead-acid batteries Horizontal plate Pb-Acid batteries for transportation Cylindrical Pb-Acid battery vs. flat plate system,High temperature batteries for back-up applications Zebra cell Li-iron sulfide cells Li-S cells Flow batteries for load leveling and large scale grid application Vanadium and iron based batteries Semi-fluid flow batteries Ni-Hydrogen batteries for space and marine applications Ni-H2 cells for space applications

Unit:3 10 (Hours)

Introduction to fuel cells PEM and alkaline fuel cells for transportation Solid oxide fuel cells Hydrogen storage systems Solid state hydrogen storage tanks Gas phase hydrogen storage tanks Cryogenic hydrogen storage tanks Liquid phase hydrogen storage tanks Fuel reformers Advanced fuel reformers

Unit:4 10 (Hours)

Technology and economic aspects of battery recycling ,Battery Applications for Stationary and Secondary Use, Regulations and Safety Aspects of High Voltage Batteries ,Code and Standards Safe handling of Lithium Batteries ,Safety of high voltage devices

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures (can be chosen one or many)

Text Books 1: G-A. Nazri and G. Pistoa, Lithium Batteries, Science and Technology, Kluwer Academic Publisher, 2003.

2:H. A. Kiehne, "Battery Technology Handbook," Marcel Dekker, NYC, 2003.

Ref. Books 1:. James Larminie and John Lowry, "Electric Vehicle Technology Explained," John Wiley, 2003. 2:.D. Linden and T. S. Reddy, "Handbook of Batteries," 3rd Edition, McGraw-Hill, 2002.

Subject code		Title of the subject	L	T	P						
BSHOE8033		TREATMENT OF INDUSTRIAL EFFULUENT	3 0		0						
		Course Educational Objective									
	Course Outcome										
		Pre-Requisites (If any)-									
CO1	Explain	about the various disposal and biological treatment process									
CO2	Describ	e various air and water treatment methods									
CO3	Apply t	he knowledge in developing new digester for treatment process									
CO4	Make use of various chemical and biological process for effluent treatment.										

General Characteristics of Industrial effluents, effects on Environment –ISI tolerance limits for discharging industrial effluents into surface water, into public sewers and on to land for Irrigation.

Unit:2 10 (Hours)

Hazardous Waste Fundamentals, Definition, Classification, Generation, Regulatory process, Current Management Practices, Treatment and Disposal Methods, Physicochemical processes, Biological processes.

Unit:3

Necessity of treatment –Segregation – Process changes – Salvaging –By Product Recovery –Ion Exchange, Electro dialysis, Solvent Extraction, Floatation – Removal of Nitrogen and Phosphorus – Boiler water treatment methods and cooling water treatment methods.

Unit:4 10 (Hours)

Sources, characteristics and treatment of Sugar, Dairy, Distilleries, treatment of power plants, oil refineries, cement and steel., Paper and pulp, tanneries, textiles, fertilizers and pharmaceuticals

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures (can be chosen one or many)

Text Books 1:Rao, M.N. & Dutta, A.K. "Waste Water Treatment", 3rd Edition, IBH Publishers, 1982

2. Metcalf and Eddy. "Waste water Engineering – Collection, Treatment, Disposal and Reuse", Mc Graw Hill Pub. Co., 1995.

Ref. Books 1: Numersorn. N.L., "Liquid Waste from industry - theories, Practice and Treatment".

2: Bhide, A.D. & Sunderesan, B.B. "Solid Waste Management", INSDOC, NEERI, Nagpur 1994

Subjec	ct code	Title of the subject	L	T	P					
рсце	DE8032	POLUTATION AND ITS CONTROL	3	0	0					
вспс	JE0U32	Course Educational Objective								
Course Outcome										
		Pre-Requisites (If any)-								
CO1	Explain a	bout the different types of solid waste								
CO2	Understar	nd the various collection and disposal method								
CO3	CO3 Apply the knowledge to utilize solid waste in different way.									
CO4	Develop new method for degradation process of solid waste									

Unit:1

10hrs Air Pollution: Air pollution Control Methods–Particulate control devices – Methods of Controlling Gaseous Emissions – Air quality standards. Noise Pollution: Noise standards, Measurement and control methods – Reducing residential and industrial noise – ISO14000

Unit:2 10 (Hours)

Industrial wastewater Management: – Strategies for pollution control – Volume and Strength reduction Neutralization – Equalization – Proportioning – Common Effluent Treatment Plants – Recirculation of industrial wastes – Effluent standards.

Unit:3

Solid Waste Management: solid waste characteristics – basics of on-site handling and collection – separation and processing – Incineration- Composting-Solid waste disposal methods – fundamentals of Land filling. Environmental Sanitation: Environmental Sanitation Methods for Hostels and Hotels, Hospitals, Swimming pools and public bathing places, social gatherings (melas and fares), Schools and Institutions, Rural Sanitation-low cost waste disposal method

Unit:4 12 (Hours

Hazardous Waste: Characterization – Nuclear waste – Biomedical wastes – Electronic wastes – Chemical wastes – Treatment and management of hazardous waste-Disposal and Control methods. Sustainable Development: Definition- elements of sustainable developments-Indicators of sustainable development-Sustainability Strategies- Barriers to Sustainability–Industrialization and sustainable development – Cleaner production in achieving sustainability- sustainable development

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures

Text Books 1: Environmental Engineering, by Ruth F. Weiner and Robin Matthews – 4th Edition Elesevier, 2003.

2: Environmental Science and Engineering by J.G. Henry and G.W. Heinke – Pearson cation

Ref. Books 1 Environmental Engineering by Mackenzie L Davis & David A Cornwell. McGraw Hill Publishing

Subject code		Title of the Subject	L	T	P		
ВСНОЕ8031		INTEGRATED SOLID WASTE	3	0	0		
		MANAGEMENT	3				
		Course Educational Objective					
Course Outcome							
Pre-Requisites (If any)-							
CO1	Explain about the different types of solid waste						
CO2	Understand the various collection and disposal method						
CO3	Apply the knowledge to utilize solid waste in different way.						
CO4	Develop new method for degradation process of solid waste						

Solid waste Management: Sources, Composition and Properties of Municipal Solid Waste, Engineering principles; Generation, Onsite handling, storage and processing including segregation; Collection, Recycling, Transfer and transport, Wasteprocessing, Recovery of resources.

Unit:2

Waste processing technologies, Biological, chemical and thermal technologies – Composting, Anaerobic digestion, Incineration and pyrolysis, Disposal of solid waste including sanitary landfill, planning, siting, design, closure and post-closure monitoring

Unit:3 10 (Hours)

Regional/Integrated solid waste management related issues. Principles of E-waste Management. Biomedical waste: Regulatory framework, categorization; generation, collection, transport, treatment and disposal.

Unit:4 10 (Hours)

Hazardous Waste Fundamentals, Definition, Classification, Generation, Regulatory process, Current Management Practices, Treatment and Disposal Methods, Physicochemical processes, Biological processes, Stabilization and solidification; Thermal methods; Land disposal, Remediation of Contaminated Sites.

Teaching Mentod (s):Chalk & Board/PPT/Video Lectures

Text Books 1: Peavy H. S., Rowe D. R. and Tchobanoglous G., Environmental Engineering, McGraw-Hill International Edition.

2:3. LaGrega, M.D., Buckingham P.L., and EvansJ.C., Hazardous Waste Management, McGraw-Hill International Editions, 1994

Ref. Books 1:Martin E.J. and Johnson J.H., Hazardous Waste Management Engineering, van NostrandReinhold,1987.

2: Wentz C.A., Hazardous Waste Management, 2nd Edition, McGraw Hill, 1995